• Title/Summary/Keyword: plasma proteins

Search Result 420, Processing Time 0.025 seconds

Effect of an Endoplasmic Reticulum Retention Signal Tagged to Human Anti-Rabies mAb SO57 on Its Expression in Arabidopsis and Plant Growth

  • Song, Ilchan;Lee, Young Koung;Kim, Jin Wook;Lee, Seung-Won;Park, Se Ra;Lee, Hae Kyung;Oh, Soyeon;Ko, Kinarm;Kim, Mi Kyung;Park, Soon Ju;Kim, Dae Heon;Kim, Moon-Soo;Kim, Do Sun;Ko, Kisung
    • Molecules and Cells
    • /
    • v.44 no.10
    • /
    • pp.770-779
    • /
    • 2021
  • Transgenic Arabidopsis thaliana expressing an anti-rabies monoclonal antibody (mAb), SO57, was obtained using Agrobacterium-mediated floral dip transformation. The endoplasmic reticulum (ER) retention signal Lys-Asp-Glu-Leu (KDEL) was tagged to the C-terminus of the anti-rabies mAb heavy chain to localize the mAb to the ER and enhance its accumulation. When the inaccurately folded proteins accumulated in the ER exceed its storage capacity, it results in stress that can affect plant development and growth. We generated T1 transformants and obtained homozygous T3 seeds from transgenic Arabidopsis to investigate the effect of KDEL on plant growth. The germination rate did not significantly differ between plants expressing mAb SO57 without KDEL (SO plant) and mAb SO57 with KDEL (SOK plant). The primary roots of SOK agar media grown plants were slightly shorter than those of SO plants. Transcriptomic analysis showed that expression of all 11 ER stress-related genes were not significantly changed in SOK plants relative to SO plants. SOK plants showed approximately three-fold higher mAb expression levels than those of SO plants. Consequently, the purified mAb amount per unit of SOK plant biomass was approximately three times higher than that of SO plants. A neutralization assay revealed that both plants exhibited efficient rapid fluorescent focus inhibition test values against the rabies virus relative to commercially available human rabies immunoglobulins. KDEL did not upregulate ER stress-related genes; therefore, the enhanced production of the mAb did not affect plant growth. Thus, KDEL fusion is recommended for enhancing mAb production in plant systems.

Structural and Functional Roles of Caspase-8 in Extrinsic Apoptosis (Apoptosis의 외인성 경로에서 caspase-8의 구조적 및 기능적 역할)

  • Ha, Min Seon;Jeong, Mi Suk;Jang, Se Bok
    • Journal of Life Science
    • /
    • v.31 no.10
    • /
    • pp.954-959
    • /
    • 2021
  • Apoptosis is an important mechanism that regulates cellular populations to maintain homeostasis, and the caspases, a family of cysteine proteases, are key mediators of the apoptosis pathway. Caspase-8 is an initiator caspase of the extrinsic apoptotic pathway, which is initiated by extracellular stimuli. Caspase-8 have two conserved domains, N-terminal tandem death effector domains (DED) and C-terminal two catalytic domain, which are important for this extrinsic apoptosis pathway. In extrinsic apoptosis pathway, death receptors which members of TNF superfamily are activated by binding of death receptor specific ligands from cell outside. After the activated death receptors recruit adaptor protein Fas-associated death domain protein (FADD), death domains (DD) of death receptor and FADD bind to each other and FADD combined with death receptor recruits procaspase-8, a precursor form of caspase-8. The DED of FADD and procaspase-8 bind to one another and FADD-bound procaspase-8 is activated by cleavage of the prodomain. This death receptor-FADD-caspase-8 complex called death inducing signaling complex (DISC). Cellular FLICE-inhibitory proteins (c-FLIPs) regulate caspase-8 activation by acting both anti- and pro-apoptotically, and caspase-8 activation initiates the activation of executioner caspases such as caspase-3. Finally activated executioner caspases complete the apoptosis by acting critically DNA degradation, nuclear condensation, plasma membrane blebbing, and the proteolysis of certain caspase substrates.

Food and Nutrient Intake Level by the Risk of Osteoporosis and Cardiovascular Disease in Postmenopausal Women: The use of the 5th Korean National Health and Nutrition Examination Surveys (2010-2011) (폐경 후 여성의 골다공증 및 심혈관계질환 위험도에 따른 영양소 및 식품섭취상태: 제5기 국민건강영양조사(2010-2011) 자료를 이용하여)

  • Kim, Hyobin;Kim, Heysook;Kwon, Oran;Park, Heejung
    • Korean Journal of Community Nutrition
    • /
    • v.24 no.2
    • /
    • pp.152-162
    • /
    • 2019
  • Objectives: The purpose of this study was to investigate the food, nutrient intake, and diet quality of postmenopausal women at high risk of osteoporosis (OP) and cardiovascular disease (CVD) compared with those of control subjects. Methods: A total of 1,131 post-menopausal women aged over 45 years, who took the 2010-2011 Korean National Health and Nutrition Examination Survey (KNHANES), were included for analysis. These participants were classified into the following groups: the OP group, with a risk of OP (n=135); the CVD group, with a risk of CVD (n=373); the OP+CVD group, with a risk of OP and CVD concurrently (n=218); and the control group (n=405) according to bone mineral density (BMD) and CVD risk. Anthropometric measurements, blood profiles, dietary intake, and dietary quality indices were measured and compared among the four groups. Results: Waist circumference, total body fat percentage, blood pressure, fasting plasma glucose, total cholesterol, triglyceride, and LDL-cholesterol were higher, and HDL-cholesterol and BMD were lower in the OP+CVD group than in the control group. In the food frequency questionnaire, the OP+CVD group had significantly higher frequencies of grain (except for multi-grain) and lower frequencies of fruit and dairy product. The frequency of consumption of red meat, processed meat, and carbonated beverages was higher in OP+CVD group. In nutrient density analysis, proteins and vitamin $B_2$ levels were significantly lower in the OP+CVD group than in the control group. The nutritional quality index (INQ) values of calcium were in the order of 0.63, 0.58, 0.56, and 0.55 in each group, and it was urgent to improve the dietary intake for calcium in postmenopausal women. In addition, vitamin $B_2$ was inadequately consumed by all groups. Conclusions: These results suggest that it is necessary to increase the intake of vitamin $B_2$ and calcium and decrease the frequency of intake of red meat, processed meat, and carbonated beverages in postmenopausal women with the risk of OP and CVD.

Biochemical Characteristics and Dietary Intake according to Household Income Levels of Korean Adolescents: Using Data from the 6th (2013 ~ 2015) Korea National Health and Nutrition Examination Survey (한국 청소년의 소득계층에 따른 혈액 생화학적 특성 및 영양소섭취상태 : 제6기(2013 ~ 2015) 국민건강영양조사를 이용하여)

  • Kwon, Yu-Kyeong;Kim, Sook-Bae
    • Korean Journal of Community Nutrition
    • /
    • v.26 no.6
    • /
    • pp.467-481
    • /
    • 2021
  • Objectives: The purpose of this study was to examine the biochemical characteristics, intake of energy, and nutrients by household income levels of Korean adolescents aged 12 to 18 years. Methods: Data from the 6th (2013 ~ 2015) Korea National Health and Nutrition Examination Survey (KNHNES) were used for the study. A total of 1,839 (966 boys, 873 girls) subjects were included, and they were divided into four income groups according to their household income level. We examined general characteristics (gender, region of residence, skipping or not-skipping breakfast, lunch, dinner, frequency of eating-out), anthropometric characteristics (height, weight, weight status), biochemical characteristics (fasting plasma glucose, blood urea nitrogen, creatinine, triglycerides, cholesterol, HDL-cholesterol, hemoglobin, and hematocrit), the quantitative intake of energy and nutrients using the Korean Dietary Reference Intakes (KDRI), and the qualitative intake evaluated by the nutrition adequacy ratio (NAR) and mean nutrition adequacy ratio (MAR) of the four groups. Results: There were significant differences by income group within the region of residence and the rate of skipping breakfast, lunch, and dinner. The low-income group had a higher rate of skipping breakfast, lunch, and dinner. According to the income group, there was a difference in the height of boys, and there was no difference in the weight and obesity of boys and girls. In the biochemical characteristics, only the hematocrit of girls showed differences by income group. The quantitative intake of energy and nutrients compared with KDRI differed by income group. There were differences in energy, carbohydrates, proteins, thiamin, riboflavin, niacin, and phosphorus levels in boys and protein, vitamin A, niacin, and sodium levels in girls. The qualitative intake of energy and nutrients examined using NAR and MAR also differed according to the income group. The NAR showed differences in calcium in boys and vitamin C and calcium in girls. The MAR revealed differences in both boys and girls by income group. Conclusions: Among adolescents in the low-income group, the rate of skipping meals was high, and the quantitative and qualitative intake of energy and some nutrients was low. It is suggested that the nutritional intake can be improved by lowering the rate of skipping breakfast, lunch, dinner. We suggest that even just providing breakfast in schools can be considered highly effective in improving the rate of avoidance of skipping meals and improving nutrient intake. Also, we suggest that it is necessary to improve the food environment, food availability, and food accessibility through national and social support for low-household income adolescents.

LncRNA H19 Drives Proliferation of Cardiac Fibroblasts and Collagen Production via Suppression of the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β Axis

  • Guo, Feng;Tang, Chengchun;Huang, Bo;Gu, Lifei;Zhou, Jun;Mo, Zongyang;Liu, Chang;Liu, Yuqing
    • Molecules and Cells
    • /
    • v.45 no.3
    • /
    • pp.122-133
    • /
    • 2022
  • The aim of this study was to investigating whether lncRNA H19 promotes myocardial fibrosis by suppressing the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis. Patients with atrial fibrillation (AF) and healthy volunteers were included in the study, and their biochemical parameters were collected. In addition, pcDNA3.1-H19, si-H19, and miR-29a/b-3p mimic/inhibitor were transfected into cardiac fibroblasts (CFs), and proliferation of CFs was detected by MTT assay. Expression of H19 and miR-29a/b-3p were detected using real-time quantitative polymerase chain reaction, and expression of α-smooth muscle actin (α-SMA), collagen I, collagen II, matrix metalloproteinase-2 (MMP-2), and elastin were measured by western blot analysis. The dual luciferase reporter gene assay was carried out to detect the sponging relationship between H19 and miR-29a/b-3p in CFs. Compared with healthy volunteers, the level of plasma H19 was significantly elevated in patients with AF, while miR-29a-3p and miR-29b-3p were markedly depressed (P < 0.05). Serum expression of lncRNA H19 was negatively correlated with the expression of miR-29a-3p and miR-29b-3p among patients with AF (rs = -0.337, rs = -0.236). Moreover, up-regulation of H19 expression and down-regulation of miR-29a/b-3p expression facilitated proliferation and synthesis of extracellular matrix (ECM)-related proteins. SB431542 and si-VEGFA are able to reverse the promotion of miR-29a/b-3p on proliferation of CFs and ECM-related protein synthesis. The findings of the present study suggest that H19 promoted CF proliferation and collagen synthesis by suppressing the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis, and provide support for a potential new direction for the treatment of AF.

The Influence of Breakfast Size to Metabolic Risk Factors (아침식사량이 대사위험요인에 미치는 영향)

  • Kim, Yun-Jin;Lee, Jeong-Gyu;Yi, Yu-Hyeon;Lee, Sang-Yeoup;Jung, Dong-Wook;Park, Seon-Ki;Cho, Young-Hye
    • Journal of Life Science
    • /
    • v.20 no.12
    • /
    • pp.1812-1819
    • /
    • 2010
  • Skipping breakfast is a risk factor closely related to metabolic syndrome and obesity. We analyzed the relationship between breakfast size, metabolic syndrome and obesity. The study included 5,548 adults who visited a health promotion center at Pusan National University from January to November of 2006. Subjects were divided into four groups according to breakfast size - skipper group (no breakfast), small intake group, medium intake group and large intake group. 959 (17.3%) of the 5548 subjects were included in the Skipper group. Intake of daily calories, proteins, carbohydrates and fats was the lowest in the Skipper group. Breakfast size increased linearly with an increased intake of daily calories, proteins, carbohydrates and fats. Body mass index ($23.4\;kg/m^2$) and waist circumference (79.6 cm) were the lowest in the Small intake group. In the Small intake group, triglycerides, fasting plasma glucose, systolic blood pressure and diastolic blood pressure were the lowest, and high density lipoprotein cholesterol levels were the highest. The number of metabolic risk factors was the lowest in Small intake group. Odds ratio of metabolic syndrome (Odds ratio=0.612) was the lowest in Small intake group. Along with increasing breakfast size, the odds ratio also increased. In this study, breakfast size was found to influence metabolic risk factors. Skipping breakfast worsened metabolic risk factors, while a small breakfast size had a favorable effect on metabolic risk factors.

Effects of Level and Degradability of Dietary Protein on Ruminal Fermentation and Concentrations of Soluble Non-ammonia Nitrogen in Ruminal and Omasal Digesta of Hanwoo Steers

  • Oh, Young-Kyoon;Kim, Jeong-Hoon;Kim, Kyoung-Hoon;Choi, Chang-Won;Kang, Su-Won;Nam, In-Sik;Kim, Do-Hyung;Song, Man-Kang;Kim, Chang-Won;Park, Keun-Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.392-403
    • /
    • 2008
  • Four ruminally fistulated Hanwoo steers were used to determine the effects of level and degradability of dietary protein on ruminal fermentation, blood metabolites and concentration of soluble non-ammonia nitrogen (SNAN) in ruminal (RD) and omasal digesta (OD). Experiments were conducted in a $4{\times}4$ Latin square design with a $2{\times}2$ factorial arrangement of treatments. Factors were protein supplements with two ruminal crude protein (CP) degradabilities, corn gluten meal (CGM) that was low in degradability (rumen-degraded protein (RDP), 23.4% CP) or soybean meal (SBM) that was high in degradability (RDP, 62.1% CP), and two feeding levels of CP (12.2 or 15.9% dry matter). Ruminal fermentation rates and plasma metabolite concentrations were determined from the RD collected at 2-h intervals and from the blood taken by jugular puncture, respectively. The SNAN fractions (free amino acid, peptide and soluble protein) in RD and OD collected at 2-h intervals were assessed by ninhydrin assay. Mean ruminal ammonia concentrations were 40.5, 74.8, 103.4 and 127.0 mg/L for low CGM, high CGM, low SBM and high SBM, respectively, with statistically significant differences (p<0.01 for CP level and p<0.001 for CP degradability). Blood urea nitrogen concentrations were increased by high CP level (p<0.001) but unaffected by CP degradability. There was a significant (p<0.05) interaction between level and degradability of CP on blood albumin concentrations. Albumin was decreased to a greater extent by increasing degradability of low CP diets (0.26 g/dl) compared with high CP diets (0.02 g/dl). Concentrations of each SNAN fraction in RD (p<0.01) and OD (p<0.05) for high CP diets were higher than those for low CP diets, except for peptides but concentrations of the sum of peptide and free amino acid in RD and OD were significantly higher (p<0.05) for high CP diets than for low CP diets. Soybean meal diets increased free amino acid and peptide concentrations in both RD (p<0.01) and OD (p<0.05) compared to CGM diets. High level and greater degradability of CP increased (p<0.001) mean concentrations of total SNAN in RD and OD. These results suggest that RDP contents, increased by higher level and degradability of dietary protein, may increase release of free amino acids, peptides and soluble proteins in the rumen and omasum from ruminal degradation and solubilization of dietary proteins. Because SNAN in OD indicates the terminal product of ruminal metabolism, increasing CP level and degradability appears to increase the amount of intestine-available nitrogen in the liquid phase.

Expression of CsRCI2s by NaCl stress reduces water and sodium ion permeation through CsPIP2;1 in Camelina sativa L.

  • Kim, Hyun-Sung;Lim, Hyun-Gyu;Ahn, Sung-Ju
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.194-194
    • /
    • 2017
  • Camelina (Camelina sativa L.) is a potential bio-energy crop that has short life cycle about 90 days and contains high amount of unsaturated fatty acid which is adequate to bio-diesel production. Enhancing environmental stress tolerance is a main issue to increase not only crop productivity but also big mass production. CsRCI2s (Rare Cold Inducible 2) are cold and salt stress related protein that localized at plasma membrane (PM) and assume to be membrane potential regulation factor. These proteins can be divide into C-terminal tail (CsRCI2D/E/F/G) or no-tail group (CsRCI2A/B/C/H). However, function of CsRCI2s are less understood. In this study, physiological responses and functional characterization of CsRCI2s of Camelina under salt stress were analyzed. Full-length CsRCI2s (A/B/E/F) and CsPIP2;1 sequences were confirmed from Camelina genome browser. Physiological investigations were carried out using one- or four-week-old Camelina under NaCl stress with dose and time dependent manner. Transcriptional changes of CsRCI2A/B/E/F and CsPIP2;1 were determined using qRT-PCR in one-week-old Camelina seedlings treated with NaCl. Translational changes of CsRCI2E and CsPIP2;1 were confirmed with western-blot using the antibodies. Water transport activity and membrane potential measurement were observed by cRNA injected Xenopus laevis oocyte. As results, root growth rate and physiological parameters such as stomatal conductance, chlorophyll fluorescence, and electrolyte leakage showed significant inhibition in 100 and 150 mM NaCl. Transcriptional level of CsPIP2;1 did not changed but CsRCI2s were significantly increased by NaCl concentration, however, no-tail type CsRCI2A and CsRCI2B increased earlier than tail type CsRCI2E and CsRCI2F. Translational changes of CsPIP2;1 was constitutively maintained under NaCl stress. But, accumulation of CsRCI2E significantly increased by NaCl stress. CsPIP2;1 and CsRCI2A/B/E/F co-expressed Xenopus laevis oocyte showed decreased water transport activity as 61.84, 60.30, 62.91 and 76.51 % at CsRCI2A, CsRCI2B, CsRCI2E and CsRCI2F co-expression when compare with single expression of CsPIP2;1, respectively. Moreover, oocyte membrane potential was significantly hyperpolarized by co-expression of CsRCI2s. However, higher hyperpolarized level was observed in tail-type CsRCI2E and CsRCI2F than others, especially, CsRCI2E showed highest level. It means transport of $Na^+$ ion into cell is negatively regulated by expression of CsRCI2s, and, function of C-terminal tail is might be related with $Na^+$ ion influx. In conclusion, accumulation of NaCl-induced CsRCI2 proteins are related with $Na^+$ ion exclusion and prevent water loss by CsPIP2;1 under NaCl stress.

  • PDF

Development of Polyclonal Antibodies to Abdominal and Subcutaneous Adipocytes for Fat-Reduced Hanwoo Beef Production (한우 체지방 감소 쇠고기 생산을 위한 복강 및 피하지방 항체 개발)

  • Choi, Chang-Weon;Kim, Yu-Hyun;Kim, Sang-Jin;Song, Man-Kang;Kwon, Eung-Gi;Oh, Young-Kyoon;Hong, Seong-Koo;Choi, Seong-Ho;Baek, Kyung-Hoon
    • Food Science of Animal Resources
    • /
    • v.28 no.5
    • /
    • pp.651-659
    • /
    • 2008
  • This study aimed to develop polyclonal antibodies to regional inedible adipocytes of Korean native cattle (Hanwoo) and investigate cross-reactivity of the antibodies. Patterns in plasma membrane proteins (PMPs) from abdominal and subcutaneous adipocytes of Hanwoo isolated by collagenase digestion were investigated using SDS-PAGE. As antigens, abdominal and subcutaneous adipocyte PMPs of Hanwoo were injected to sheep 3 times at 3 wk intervals for passive immunization, and non-immunized serum and antisera were collected before and after the injections. Titers of the antisera obtained from sheep and their cross-reactivities with heart, kidney, liver, lung, muscle, and spleen of Hanwoo were determined by ELISA. Isolation and culture of abdominal and subcutaneous adipocytes of Hanwoo were performed for analysing LDH concentration. Based on the SDS-PAGE analysis, specific proteins of PMPs in abdominal and subcutaneous adipocytes appeared despite rather similar patterns between both adipocytes. At the level of 1:1,000 dilution, little antibody reactivity appeared in non-immunized serum whereas the antisera had relatively strong reactivity up to the level of 1:128,000 and 1:64,000 dilution. These findings may indicate that strong antibodies against adipocyte PMPs can be developed using an immunological approach. Extremely low reactivities of abdominal and subcutaneous adipocyte antisera were detected with PMPs of the organs. Both antisera strongly reacted with each adipocyte PMPs and showed statistically (p<0.01) higher cross-reactivities compared with non-immunized serum. In conclusion, these results may indicate that the present polyclonal antibodies against regional inedible adipocyte PMPs are well developed and have safety in cross-reactivities with body organs. Further studies on in vivo cross-reactivity and fat reduction of the antibodies against abdominal and subcutaneous adipocytes PMPs of Hanwoo should be required for inedible fat-reduced high quality beef production.

Insulin-like growth factor가 소장 점막 세포 증식에 미치는 영향

  • 윤정한
    • Proceedings of the Korean Nutrition Society Conference
    • /
    • 1995.11b
    • /
    • pp.11-34
    • /
    • 1995
  • Growth hormone (GH) plays a key role in regulating postnatal growth and can stimulate growth of animals by acting directly on specific receptors on the plasma membrane of tissues or indirectly through stimulating insulin-like growth factor (IGF)-I synthesis and secretion by the liver and other tissues. IGF-I and IGF-Ⅱ are polypeptides with structural similarity with proinsulin that stimulate cell proliferation by endocrine, paracrine and autocrine mechanisms. The initial event in the metabolic action of IGFs on target cells appears to be their binding to specific receptors on the plasma membrane. Current evidence indicates that the mitogenic actions of both IGFs are mediated primarily by binding to the type I IGF receptors, and that IGF action is also mediated by interactions with IGF-binding proteins (IGFBPs). Six distinct IGFBPs have been identified that are characterized by cell-specific interaction, transcriptional and post-translational regulation by many different effectors, and the ability to either potentiate or inhibit IGF actions. Nutritional deficiencies can have their devastating consequence during growth. Although IGF-I is the major mediator of GH's action on somatic growth, nutritional status of an organism is a critical regulator of IGF-I and IGFBPs. Various nutrient deficiencies result in decreased serum IGF-I levels and altered IGFBP levels, but the blood levels of GH are generally unchanged or elevated in malnutrition. Effects of protein, energy, vitamin C and D, and zinc on serum IGF and IGFBP levels and tissue mRNA levels were reviewed in the text. Multiple factors are involved in the regulation of intestinal epithelial cell growth and differentiation. Among these factors the nutritional status of individuals is the most important. The intestinal epithelium is an important site for mitogenic action of the IGFs in vivo, with exogenous IGF-I stimulating mucosal hyperplasia. Therefore, the IGF system appears to provide and important mechanism linking nutrition and the proliferation of intestinal epithelial cells. In order to study the detailed mechanisms by which intestinal mucosa is regulated, we have utilized IEC-6 cells, an intestinal epithelial cell line and Caco-2 cells, a human colon adenocarcinoma cell line. Like intestinal crypt cells analyzed in vivo or freshly isolated intestinal epithelial cells, IEC-6 cells and Caco-2 cells possess abundant quatities of both type Ⅰ and type Ⅱ IGF receptors. Exogenous IGFs stimulate, whereas addition of IGFBP-2 inhibits IEC-6 cell proliferation. To investigate whether endogenously secreted IGFBP-2 inhibit proliferation, IEC-6 cells were transfected with a full-length rat IGFBP-2 cDNA anti-sense expression construct. IEC-6 cells transfected with anti-sense IGFBP-2 protein in medium. These cells grew at a rate faster than the control cells indicating that endogenous IGFBP-2 inhibits proliferation of IEC-6 cells, probably by sequestering IGFs. IEC-6 cells express many characteristics of enterocyte, but do not undergo differentiation. On the other hand, Caco-2 cells undergo a spontaneous enterocyte differentiation. On the other hand, Caco-2 cells undergo a spontaneous enterocyte differentiation after reaching confluency. We have demonstrated that Caco-2 cells produce IGF-Ⅱ, IGFBP-2, IGFBP-3, and an as yet unidentified 31,000 Mr IGFBP, and that both mRNA and peptide secretion of IGFBP-2 and IGFBP-3 increased, but IGFBP-4 mRNA and protein secretion decreased after the cells reached confluency. These changes occurred in parallel to and were coincident with differentiation of the cells, as measured by expression of sucrase-isomaltase. In addition, Caco-2 cell clones forced to overexpress IGFBP-4 by transfection with a rat IGFBP-4 cDNA construct exhibited a significantly slower growth rate under serum-free conditions and had increased expression of sucrase-isomaltase compared with vector control cells. These results indicate that IGFBP-4 inhibits proliferation and stimulates differentiation of Caco-2 cells, probably by inhibiting the mitogenic actions of IGFs.

  • PDF