• Title/Summary/Keyword: plasma polymerization method

Search Result 48, Processing Time 0.04 seconds

Wettability control in C-SiOx film formed by plasma polymerization of HMDSO/$O_2$ mixture

  • Kim, Seong-Jin;Lee, Kwang-Ryeol;Moon, Myoung-Woon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.328-328
    • /
    • 2011
  • Wetting phenomena have been heavily studied for industrial and academic researches especially tuning the wettability between hydrophilicity and hydrophobicity. Wicking through the surface texture is shown on superhydrophilic surface while rolling (or dewetting) on the patterns of superhydrophobic surface. These wetting phenomena are known to be affected by surface wettability determined with physical surface patterns as well as chemical composition of surface layer. In this research, we introduce a method to control the wettability of a thin C-SiOx film from hydrophobic to hydrophilic using a mixture gas of HMDSO/$O_2$ by plasma polymerization with rf-CVD (radio frequency-Chemical Vapor Deposition). Wettability was finely controlled by changing the ratio of HMDSO/$O_2$. Hydrophilicity increased as the ratio decreased, while hydrophobicity was enhanced by the ratio. Moreover, fine control from superhydrophilicity to superhydrophobicity was achieved by C-SiOx coating on the Si wafer with prepatterns of submicron-sized pillar array formed by $CF_4$ plasma etching.

  • PDF

A Study on the molecular structure and molecular weight control of styrene films by plasma polymerization (플라즈마 중합법에 의한 스티렌 박막의 분자 구조 및 분자량 제어에 관한 연구)

  • 김종택;최충양;박종관;박응춘;이덕출
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.213-219
    • /
    • 1997
  • The plasma polymerized styrene films were prepared by using an inter-electrode capacitively coupled gas-flow-type reactor, and the effects of plasma polymerization condition on the molecular weight distribution were investigated by Fourier Transform Infrared (FT-IR), Pyrolysis Gas Chromatography(PyGC), Differential Scanning Calorimetry(DSC) and Gel Permeation Chromatography(GPC). From the above results, the very cross-linked films different from chemical characteristics of the starting monomer were taken out, and it is realized that the molecular structure, cross linking density, and molecular weight distribution could be controlled by changing the parameters such as deposition pressure, deposition power and gas flow rate. Accordingly, it is suggested that plasma polymerization method performed by inter-electrode capacitively coupled gas-flow-type reactor has good characteristics for manufacturing the functional organic thin films which can be applied in sensors, opto-electric device, photo-resist by changing the polymerization parameters.

  • PDF

Amine functionalized plasma polymerized PEG film: Elimination of non-specific binding for biosensing

  • Park, Jisoo;Kim, Youngmi;Jung, Donggeun;Kim, Young-Pil;Lee, Tae Geol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.378.2-378.2
    • /
    • 2016
  • Biosensors currently suffer from severe non-specific adsorption of proteins, which causes false positive errors in detection through overestimation of the affinity value. Overcoming this technical issue motivates our research. Polyethylene glycol (PEG) is well known for its ability to reduce the adsorption of biomolecules; hence, it is widely used in various areas of medicine and other biological fields. Likewise, amine functionalized surfaces are widely used for biochemical analysis, drug delivery, medical diagnostics and high throughput screening such as biochips. As a result, many coating techniques have been introduced, one of which is plasma polymerization - a powerful coating method due to its uniformity, homogeneity, mechanical and chemical stability, and excellent adhesion to any substrate. In our previous works, we successfully fabricated plasmapolymerized PEG (PP-PEG) films [1] and amine functionalized films [2] using the plasma enhanced chemical vapor deposition (PECVD) technique. In this research, an amine functionalized PP-PEG film was fabricated by using the plasma co-polymerization technique with PEG 200 and ethylenediamine (EDA) as co-precursors. A biocompatible amine functionalized film was surface characterized by X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The density of the surface amine functional groups was carried out by quantitative analysis using UV-visible spectroscopy. We found through surface plasmon resonance (SPR) analysis that non-specific protein adsorption was drastically reduced on amine functionalized PP-PEG films. Our functionalized PP-PEG films show considerable potential for biotechnological applications such as biosensors.

  • PDF

A preparation of organic thin films by capacitive coupled plasma polymerization method (내전극 정전 결합형 플라즈마 중합 장치에 의한 유기 박막의 작성)

  • 김종택;박구범;이덕출;윤문수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.45-46
    • /
    • 1990
  • In this study, we fabricated Plasma polymerized styrene thin films which used a new capacitive type apparatus. RE Power supply (13.56 MHz) was used and styrene monomer was adopted. After the preparation of thin films the molecular structure of Plasma polymerized styrene films was analyzed by some analyses as IR, FT-IR, Gas chromatography and so on.

Spectroscopic Analysis of the Remote-plasma-polymerized Methyl Methacrylate Film (원격 플라즈마 중합된 메틸메타크릴레이트 필름의 분광학적 분석)

  • Seomoon, Kyu
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.49-54
    • /
    • 2021
  • Plasma-polymerized methyl methacrylate (MMA) thin films were synthesized by remote plasma, and effects of plasma power, reaction pressure and direct-indirect plasma on the growth rate and chemical bonding were investigated with alpha-step, FT-IR, XPS and Langmüir probe method. As the plasma power and pressure increased, the tendency of growth rate showed maximum value at a certain range. FT-IR and XPS analyses revealed that composition ratio of C/O and hydrocarbon (C-C) % in the deposited films increased with plasma power, but ester (COO) C % decreased with it. Direct plasma method was effective for fast growth rate, but indirect plasma method was favorable for maintaining the chemical structure of MMA.

A study on the fabrication and electric conduction characteristics of Hexamethyldisiloxane thin films by plasma polymerization method (플라즈마중합법에 의한 헥사매틸디실록산 박막의 제조 및 전기전도특성)

  • Park, J.K.;Lee, S.H.;Lee, D.C.;Cho, S.W.;Woo, H.H.;Lee, J.T.;Kim, B.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1168-1170
    • /
    • 1995
  • The purpose of this thesis is to fabricate the hexamethyldisiloxane thin film by plasma polymerization method, and to investigate the electric conduction characteristics of plasma polymerized thin film. Current density was measured in being changed annealing temperature(room temperature${\sim}125[^{\circ}C]$) and electric field intensity($10^5{\sim}1.2{\times}10^6$[V/cm]). The current density of thin films fabricated at discharge power of $30{\sim}90$[W] showed $1.3{\times}10^{-11}{\sim}3.1{\times}10^{-12}[A/cm^2]$ after 10 minutes of permission of electric field. The current density increased gradually with increasing of annealing temperature and electric field intensity. The electric conduction type of thin films fabricated in discharge power of 90[W] agreed with Schottky type.

  • PDF

Surface modification of polymeric membranes for low protein binding

  • Higuchi, Akon;Tamai, Miho;Tagawa, Yoh-Ichi;Chang, Yung;Ling, Qing-Dong
    • Membrane and Water Treatment
    • /
    • v.1 no.2
    • /
    • pp.103-120
    • /
    • 2010
  • Surface modification of microfiltration and ultrafiltration membranes has been widely used to improve the protein adsorption resistance and permeation properties of hydrophobic membranes. Several surface modification methods for converting conventional membranes into low-protein-binding membranes are reviewed. They are categorized as either physical modification or chemical modification of the membrane surface. Physical modification of the membrane surface can be achieved by coating it with hydrophilic polymers, hydrophilic-hydrophobic copolymers, surfactants or proteins. Another method of physical modification is plasma treatment with gases. A hydrophilic membrane surface can be also generated during phase-inverted micro-separation during membrane formation, by blending hydrophilic or hydrophilic-hydrophobic polymers with a hydrophobic base membrane polymer. The most widely used method of chemical modification is surface grafting of a hydrophilic polymer by UV polymerization because it is the easiest method; the membranes are dipped into monomers with and without photo-initiators, then irradiated with UV. Plasma-induced polymerization of hydrophilic monomers on the surface is another popular method, and surface chemical reactions have also been developed by several researchers. Several important examples of physical and chemical modifications of membrane surfaces for low-protein-binding are summarized in this article.

Fabrication of OTFT with plasma polymerized methylmethacrylate organic thin film (플라즈마 중합된 ppMMA 유기 박막을 절연층으로 한 유기박막 트랜지스터의 제작)

  • Lim, J.S.;Shin, P.K.;You, D.H.;Park, G.B.;Lim, H.C.;Jo, G.S.;Lee, S.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1347-1348
    • /
    • 2007
  • In this paper, ITO gate electrode surface was modified using $O_2$ plasma and organic gate insulating layers were deposited on the ITO surface using plasma polymerization technique. In order to investigate the influence of the plasma coupling method and plasma conditions on the plasma polymerized methyl methacrylate (ppMMA) thin film properties, inductively coupled (ICP) and capacitively coupled plasma (CCP) were used to generate the plasma and the plasma parameters were varied. The ppMMAs were investigated using atomic force microscopy (AFM) and a Fourier Transform Infrared (FT-IR) spectroscopy. Dielectric constants of the ppMMA thin films were investigated using a impedance analyzer (HP4192A, LF Impedance Analyzer). Current-Voltage (I-V) characteristics of the organic thin film transistors (OTFTs) were investigated using a source measurement unit (SMU: Keithley 2612). Proposed method can be applied to dry-process to fabricate OTFTs during overall fabricating steps.

  • PDF

Improving Hydrophilic and Finishing Performance of Dyeable PP through Atmospheric Pressure Plasma Treatment (플라즈마 처리를 통한 가염PP의 친수화도 및 가공성능 향상)

  • Cho, Hang Sung
    • Textile Coloration and Finishing
    • /
    • v.34 no.3
    • /
    • pp.165-172
    • /
    • 2022
  • Polypropylene(PP) is a textile material with various functions such as eco-friendliness, lightness, and elasticity. Although most synthetic fibers can be dyed and finished, but original PP is difficult to dye or finish due to its extremely hydrophobic properties, so its application expansion is limited. In order to solve this problem, dyeable PP was developed, and various researches on textiles for clothing such as mass production technology, fine fiberization and performance improvement are in progress. Plasma treatment is a processing method for modifying the surface of fabrics, and has effects such as hydrophilization, deepening color, improving adhesion, and surface polymerization. In this study, plasma treatment was applied to study changes in hydrophilization properties of dyeable PP, surface changes before and after plasma treatment and performance according to hydrophilization.

Organic Transistor Characteristics with Electrode Structures (전극 구조에 따른 유기 트랜지스터 특성)

  • Lee, Boong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.93-98
    • /
    • 2013
  • In this paper, We have fabricated PMMA thin films by plasma polymerization method for organic thin film transistor's insulator layer. For improving the characteristics of organic transistor, we tested transistor's mobility and output values with organic transistor's electrode structures. As a results, the mobility of top contact was $8{\times}10^{-3}[cm^2V^{-1}s^{-1}]$, that of bottom contact was $2{\times}10^{-4}[cm^2V^{-1}s^{-1}]$. Also, off current of bottom contact was increased. Therefore, we recommend the top contact electrode structure of organic transistor.