• Title/Summary/Keyword: plasma generator

Search Result 173, Processing Time 0.034 seconds

Discharge and Ozone Generation Characteristics of a Micro-Size Nonthermal Plasma Generator Using Silicon Oxide Film (실리콘 산화막을 이용한 초소형 비열플라즈마 발생장치의 방전 및 오존발생특성)

  • Kang, Jeong-Hoon;Tae, Heung-Sik;Moon, Jae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1816-1818
    • /
    • 1996
  • A micro-size nonthermal plasma generator, using a $SiO_2$ film as a dielectric barrier, has been studied experimentally for a high frequency ac voltage in 2LPM oxygen gas fed. The $SiO_2$ film as a micro-size dielectric barrier was made by the wet oxidation of n-type Si wafer($220[{\mu}mt]$). It can be generated ozone, as a nonthermal plasma intensity parameter, at very low level of applied voltage about 1[kV] by using the micro-size dielectric barrier. As a result, in case that have no air gap spacing i.e. surface discharge case shows relatively higher ozone concentration rather than that case of the micro-airgap spacing.

  • PDF

A Study of Impedance Analysis for Pulsed Plasma Reactor (펄스 코로나 반응기에 대한 임피던스 분석)

  • Choi, Y.W.;Lee, H.S.;Rim, G.H.;Kim, T.H.;Kim, J.W.;Jang, G.H.;Shin, W.H.;Song, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1601-1604
    • /
    • 1998
  • In this study, the impedance characteristic for wire-prate plused plasma reactor was analyzed by experiment. For this, rotary spark gap and MPC purse generator were used as power source. The reactor impedance decreases with increasing wire length and applied voltage. From this fundamental experiment, we deduced a method for the impedance matching between purse generator and pulsed plasma reactor.

  • PDF

A Study on the High Performance Active Clamp ZVS Flyback Converter for RF Generator (RF 발생기용 고성능 능동 클램프 ZVS 플라이백 컨버터에 관한 연구)

  • Lee W.S.;Kim J.H.;Won C.Y.;Choi D.K.;Choi S.D.;KIM S.S.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.534-537
    • /
    • 2001
  • This paper deals with the active clamp ZVS flyback converter for RF generator. The proposed converter has the characteristics of the low switching noise and high efficient regarding conventional flyback converter. To verify validity of the proposed converter, the 100kHz, 48V, 300W converter are simulation and experimental result. This converter will be apply to the discharge drive circuit for PDP(Plasma Display Panel) TV.

  • PDF

Reduction Effect of Microorganisms by Nano Plasma ion (NPi) (Nano Plasma ion (NPi)에 의한 미생물 제어)

  • Kang, Hyeon-Cheol;Yun, Han-Seong;Sung, Bong-Jo;Lee, Sung-Hwa;Lee, Jang-Woo;Seo, Yong-Bae;Lee, Myung-Suk
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1710-1715
    • /
    • 2011
  • The bactericidal effect of nano plasma ion (NPi) which was generated by NPi was analyzed using different kinds of microorganisms, exposure times, chamber sizes, ion amounts and distance. As the result of Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium, Klebsiella pneumoniae, Staphylococcus aureus and Bacillus subtilis were shown different in decrement. Gram-negative bacteria E. coli showed the highest percentage (96.57%) and Gram-positive bacteria B. subtilis which produced spore has the lowest percentage (57.41%). From the exposure time of NPi most of the microorganisms were extinct at an early stage. According to the size of the chamber we compared the loss of E.coli and the experiment result shown, analyzed NPi using 5 chambers $0.005m^3$ to $30m^3$ for 2 hr, that when volume of the chamber increased, saturation ion and bactericidal effect was decreased. In addition, an NPi generator installed in the $1m^3$ chamber investigated the decrement of E. coli. Saturation ion concentration increased with decrement. Finally, E. coli showed a similar reduction according to the distance from NPi generator.

A Study on DC Thermal Plasma Generation and ist Characteristics (직류 열 플라즈마의 발생 및 그특성에 관한 연구)

  • 김원규;황기웅
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.11
    • /
    • pp.1219-1226
    • /
    • 1990
  • This paper is to report the results on the design and construction of a thermal plasma generator with high current DC source. Also, this paper presents the methods to stabilize plasma and to find effects of process variables on plasma characteristics. For this purpose, the reaction chamber, vacuum system, plasma generating torch, magnetic field generating coil with power supply, high current DC source and the other parts have been designed. Fundamental properties of the thermal plasma under various conditions have been measured and analyzed. Magnetic Reynolds Number has been introduced to explain the relationship between plasma and external magnetic field. Through this number, the effect of magnetic field on the plasma has been explained under various flow rates and pressure. A sudden increase in the plasma voltage has been observed with the increase of magnetic field. From this, fundamental changes in plasma flow are believed to occur at the nozzle, and an effort to explain the phenomenon has been tried.

  • PDF

Breakdown Properties in Physiological Saline by High Voltage Pulse Generator

  • Byeon, Yong-Seong;Song, Ki-Baek;Uhm, Han-Sup;Shin, Hee-M.;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.333-333
    • /
    • 2011
  • We have investigated the breakdown properties in liquids by high voltage pulse system. High voltage pulse power system is consisted of the Marx-generator with two capacitors (0.5 ${\mu}F$, withstanding voltage is 40 kV), to which the charging voltage can be applied to maximum 30 kV DC, spark gap switch and charging resistor of 20 $M{\Omega}$. We have made use of tungsten pin electrodes of anode-cathode (A-K), which are immersed into the liquids. The breakdown voltage and current signals are measured by high voltage probe (Tektronix P6015A) and current monitor (IPC CM-1.S). Especially the high speed breakdown or plasma propagation characteristics in the pulsed A-K gap have been investigated by using the high speed ICCD camera. We have measured the electron temperature through the Boltzmann plot method from the breakdown spectrums. Here the A-K gap has been changed by 1 mm, 2 mm, and 3 mm. The used liquids are distilled water and solution of salt (0.9 %). The output voltage and current signals at breakdown in distilled water are shown to be bigger than those in saline solution. The breakdown voltage and current characteristics in liquids will be discussed in accordance with A-K gap distances. It is also found that the electron temperatures and plasma densities in liquids are decreased in conformity with A-K gap.

  • PDF

The Present-Day State and Outlooks of Using Plasma-Energy Technologies in Heat-and-Power Industry

  • Karpenko, E.I.;Messerle, V.E.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.2
    • /
    • pp.1-4
    • /
    • 2001
  • Urgency of using plasma-energy technologies in power industry, is outlined, increasing of economical efficiency, decreasing of energy consumption and decreasing of environmental pollution, are shown, scientific and technical bases for plasma-energy technologies of fuel utilisation, are designed, results of theoretical, experimental and rig investigations of processes of plasma ignition, gasification, thermochemical preparation for burning and combined processing of coals, are presented, results of realisation of plasma technologies of residual-oil-free (mazout) pulverised-coal boiler kindling, lighting of torch and stabilisation of luid slagging in furnaces with removal of fluid slag, are described.

  • PDF

Analysis of Impedance and Stray Inductance for Pulsed Plasma Reactor (펄스 플라스마 반응기에 대한 임피던스 및 누설 인덕턴스 분석)

  • Choi, Young-Wook;Lee, Hong-Sik;Rim, Geun-Hie;Kim, Tae-Hee;Kim, Jong-Wha;Jang, Gil-Hong;Shin, Wan-Ho;Song, Young-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.4
    • /
    • pp.253-260
    • /
    • 1999
  • In this paper, the impedance characteristic of wire-plate pulsed plasma reactor was investigated by experiment. The experiment have carried out under the several conditions of voltage, wire length and wire-plate distance. The impedance of reactor wad decreased with increasing voltage and wire length. The nature of discharge in reactor was changed from streamer corona to spark with increasing incident energy, from which we understood the critical energy density between the two discharges. Fromthis experiment, we proposed the method for the impedance matching between pulse generator and pulsed plasma reactor. Additionally, we succeeded in the analysis ofstray inductance of 0.5MW reactor using EMTP (ElectroMagnetic Transients Program). This means that EMTP is also useful for the analysis of inevitable stray inductance of forthcoming a large scale reactor.

  • PDF

Experimental Study on Design Parameters of Explosive-driven High-intensity Flash Generator (폭발형 고섬광 발생장치의 설계 변수에 관한 실험적 연구)

  • Kim, Kyung Sik;Ahn, Jae-Woon;Yang, Hui-Won;Kwon, Mi-Ra
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.283-288
    • /
    • 2016
  • A non-lethal weapon is a device that can subdue targets without causing death or mortal wounds. A high-intensity flash generator can negate electro-optical sensors and cause temporal flash blindness with a high intensity of light. In this study, we derive the design parameters of an explosive-driven high-intensity flash generator that uses the interaction of plasma caused by the detonation of explosives with surrounding inert gas. To determine the design parameters of the flash generator, we analyze test results measured using optical sensors. The experimental results show that the light intensity of xenon gas is about four times higher than that of air. In addition, the intensity increases with the weight of the explosive, and the inert gas cross-sectional area encountered a shock wave in the airframe. The light intensity caused by a double-initiation generator is about two times higher than that of the single-initiation generator.

Attenuation Effects of Plasma on Ka-Band Wave Propagation in Various Gas and Pressure Environments

  • Lee, Joo Hwan;Kim, Joonsuk;Kim, Yuna;Kim, Sangin;Kim, Doo-Soo;Lee, Yongshik;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.63-69
    • /
    • 2018
  • This work demonstrates attenuation effects of plasma on waves propagating in the 26.5-40 GHz range. The effect is investigated via experiments measuring the transmission between two Ka-band horn antennas set 30 cm apart. A dielectric-barrier-discharge (DBD) plasma generator with a size of $200mm{\times}100mm{\times}70mm$ and consisting of 20 layers of electrodes is placed between the two antennas. The DBD generator is placed in a $400mm{\times}300mm{\times}400mm$ acrylic chamber so that the experiments can be performed for plasma generated under various conditions of gas and pressure, for instance, in air, Ar, and He environments at 0.001, 0.05, and 1 atm of pressure. Attenuation is calculated by the difference in the transmission level, with and without plasma, which is generated with a bias voltage of 20 kV in the 0.1-1.4 kHz range. Results show that the attenuation varies from 0.05 dB/m to 9.0 dB/m depending on the environment. Noble gas environments show higher levels of attenuation than air, and He is lossier than Ar. In all gas environments, attenuation increases as pressure increases. Finally, electromagnetic models of plasmas generated in various conditions are provided.