• Title/Summary/Keyword: plasma characteristics

Search Result 2,659, Processing Time 0.043 seconds

Plasma Process Effect and Selectivity Characteristics of Carbon Nanotube Film Humidity Sensor (CNT 습도센서의 플라즈마처리 효과와 선택성 특성)

  • Park, Chan-Won
    • Journal of Industrial Technology
    • /
    • v.33 no.A
    • /
    • pp.67-72
    • /
    • 2013
  • CNT(carbon nanotube) humidity sensors with plasma treated electrodes exhibit a much faster response time and a higher sensitivity to humidity, compared to untreated CNT and porous Cr electrodes. These results may be partially due to their percolated pore structure being more accessible for water molecules and for expending the diffusion of moisture to the polyimide sensing film, and partially due to the oxygenated surface of CNT films. This paper shows a plasma process effect and selectivity characteristics of CNT film humidity sensor.

  • PDF

Characteristics on Corrosion Resistance of Medium High Carbon Low Alloy Steels using Plasma Nitriding Process (플라즈마 질화처리한 중, 고탄소저합금강의 내식성에 관한 연구)

  • 이병찬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.702-711
    • /
    • 1998
  • The characteristics of corrosion resistance for the surface of medium high carbon steels and low alloy steels utilizing as manufacturing the machinery structures and machining tools and treating by plasma/ion nitriding process have been studied in terms of electrochemical polarization behav-iors including corrosion potential(Ecorr) anodic polarization trends and polarization resistance(Rp) The seven base materials showed a clear passivation behavior for the polarization tests in the ASTM standard solution 1N ${H_2){SO_4}$ Although the treated surface by plasma nitriding for the seven test materials showed a significant increase in hardness the treatment gave a detri-mental effect in corrosion resistance. The various characteristics including corrosion potential polarization curves microstructures corrosion current polarization resistance among non-treat-ed nitriding and/or soft-nitriding treated specimens have been investigated and some of the mechanisms discussed.

  • PDF

Characteristics of the Oxygen Plasma and Its Application to Photoresist Stripping (산소 플라즈마의 특성과 포토레지스트 제거에의 응용)

  • Whang, Ki Woong;Lee, Jong Duk;Kim, Joung Ho
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.1
    • /
    • pp.73-78
    • /
    • 1987
  • The physical mechanism of a RF discharge used in photoresist stripping and etching process are not well understood and, plasma reactor design and the determination of optimum operating coditions are done largely on empirical basis. We analyzed the discharge process through the measurement of plasma characteristics and applied out results tothe analysis of the photoresist stripping. We investigated the effects of plasma electron density, neutral oxygen gas pressure and electrode temperature on the stripping rates and related their effects with the characteristics of plasma.

  • PDF

Effect of O2 Plasma Treatment on the Surface Morphology and Characteristics of Poly (imide) to Develop Self-cleaning Industrial Materials (자기세정산업용 소재 개발을 위한 O2 플라즈마 처리가 Poly(imide) 필름의 표면 형태 및 특성에 미치는 영향)

  • Kang, In-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.10
    • /
    • pp.1117-1124
    • /
    • 2012
  • This study was a preliminary study to investigate the influence of surface morphology and characteristics on the self-cleaning of substrates. PI film was treated by $O_2$ plasma to modify the surface; in addition, AFM and Fe-SEM were employed to examine the morphological changes induced on a PI film treated by $O_2$ plasma and surface energies calculated from measured contact angles between several solutions and PI film based on the geometric mean and a Lewis acid base method. The surface roughness of PI film treated by $O_2$ plasma increased with the duration of the $O_2$ plasma on PI film due to the increased surface etching. The contact angle of film treated by $O_2$ plasma decreased with the increased treatment time in water and surfactant solution; in addition, the surface energy increased with the increased treatment times largely attributed to the increased portion on the polar surface energy of PI film. The coefficient of the correlation between surface roughness and surface polarity such as contact angle and surface energy was below 0.35; however, it was over 0.99 for the contact angle and surface energy.

Associations between Clinical Characteristics and Plasma BDNF Levels of Panic Disorder (공황장애의 임상적 특성과 Brain-Derived Neurotrophic Factor 농도와의 관계)

  • Hwang, In-Ho;Park, Jong-Il;Yang, Jong-Chul
    • Anxiety and mood
    • /
    • v.11 no.2
    • /
    • pp.129-135
    • /
    • 2015
  • Objective : Brain-derived neurotrophic factor (BDNF) is implicated in the pathophysiology of several neuropsychiatric disorders. However, there are few studies on BDNF of panic disorder. In this study, we investigated plasma BDNF levels in patients with panic disorder, and evaluated whether there are associations between clinical characteristics of panic disorder and plasma BDNF levels. Methods : We included 110 patients with panic disorder and 110 health controls in the current study. Plasma BDNF levels were measured by the enzyme-linked immunosorbent assay (ELISA). Plasma BDNF level differences were evaluated according to the clinical characteristics, such as duration of illness, recent stressful life event, agoraphobia, and insomnia. Results : The mean plasma BDNF levels of patients with panic disorder were significantly lower, as compared with those of controls (192.50 pg/mL vs. 693.75 pg/mL, t=8.838, p<0.001). The mean plasma BDNF levels of patients who had recent stressful life events were significantly higher, as compared with those who did not ($269.79{\pm}358.96pg/mL$ vs. $136.94{\pm}187.06pg/mL$, t=-2.525, p=0.013). Conclusion : These results suggested that BDNF plays a potential role in the pathophysiology of panic disorder.

Low Temperature Thermal Oxidation using ECR Oxygen Plasma (ECR 산소 플라즈마를 이용한 저온 열산화)

  • 이정열;강석원;이진우;한철희;김충기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.3
    • /
    • pp.68-77
    • /
    • 1995
  • Characteristics of electron cyclotron resonance (ECR) plasma thermal oxide grown at low-temperature have been investigated. The effects of several process parameters such as substrate temperature, microwave power, gas flow rate, and process pressure on the growth rate of the oxide have been also investigated. It was found that the plasma density, reactive ion species, is strongly related to the growth rate of ECR plasma oxied. It was also found that the plasma density increases with microwave power while it decreases with decreasing O2 flow rate. The oxidation time dependence of the oxide thichness showed parabolic characteristics. Considering ECR plasma thermal oxidation at low-temperature, the linear as well as parabolic rate constants calculated from fitting data by using the Deal-Grove model was very large in comparison with conventional thermal oxidation. The ECR plasma oxide grown on (100) crystalline-Si wafer exhibited good electrical characteristics which are comparable to those of thermal oxide: fixed oxide charge(N$_{ff}$)= 7${\times}10^{10}cm^{-2}$, interface state density(N$_{it}$)=4${\times}10^[10}cm^{-2}eV^{-1}$, and breakdown field > 8MV/cm.

  • PDF

Characteristics of Nonthermal Plasma Source in Various Liquids

  • Lim, Seung-Ju;Min, Boo-Ki;Taylor, Nathan;Kim, Tae-Gyu;Kim, Hyeong-Seok;Yang, Seon-Pil;Jung, Jin-Yong;Han, Jin-Hyun;Lee, Jong-Yong;Kang, Seung-Oun;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.259.1-259.1
    • /
    • 2014
  • Recently non-thermal plasma has been frequently applied to various research fields. The liquid plasma have received much attention lately because of interests in surgical and nanomaterial synthesis applications. Especially, intensive researches have been carried out for non-thermal plasma in liquid by using various electrode configurations and power supplies. We have developed a bioplasma source which could be used in a liquid, in which outer insulator has been covered onto the outer electrode. Also we have also put an insulator between the inner and outer electrode. Based on the surface discharge mode, the nonthermal bioplasma has been generated inside a liquid by using an alternating current voltage generator with peak voltage of 12 kV under driving frequency of 22 KHz. Here the discharge voltage and current have been measured for electrical characteristics. Especially, We have measured discharge and optical characteristics under various liquids of deionized (DI) water, tap water, and saline by using monochromator. We have also observed nitric oxide (NO), hydrogen peroxide (H2O2), and hydroxyl (OH) radical species by optical emission spectroscopy during the operation of bioplasma discharge inside various kinds of DI water, tap water, and saline. Here the temperature has been kept to be $40^{\circ}C$ or less when discharge in liquid has been operated in this experiment. Also we have measured plasma temperature by high speed camera image and density by using either H-alpha or H-beta Stark broadening method.

  • PDF

A Study of Atmospheric-pressure Dielectric Barrier Discharge (DBD) Volume Plasma Jet Generation According to the Flow Rate (유량에 따른 대기압 유전체 전위장벽방전(DBD) 플라즈마 젯 발생에 관한 연구)

  • Byeong-Ho Jeong
    • Journal of Industrial Convergence
    • /
    • v.21 no.7
    • /
    • pp.83-92
    • /
    • 2023
  • The bullet shape of the plasma jet using the atmospheric-pressure dielectric barrier discharge method changes depending on the applied fluid rate and the intensity of the electric field. This changes appear as a difference in spectral distribution due to a difference in density of the DBD plasma jet. It is an important factor in utilizing the plasma device that difference between the occurrence of active species and the intensity through the analysis of the spectrum of the generated plasma jet. In this paper, a plasma jet generator of the atmospheric pressure volume DBD method using Ar gas was make a prototype in accordance with the proposed design method. The characteristics jet fluid rate analysis of Ar gas was accomplished through simulation to determine the dependence of flow rate for the generation of plasma jets, and the characteristics of plasma jets using spectrometers were analyzed in the prototype system to generate optimal plasma jet bullet shapes through MFC flow control. Through the design method of the proposed system, the method of establishing the optimal plasma jet characteristics in the device and the results of active species on the EOS were verified.