• Title/Summary/Keyword: plasma activated

Search Result 341, Processing Time 0.05 seconds

Improvement of Insulin Resistance by Curcumin in High Fat Diet Fed Mice (고지방식이 급여 마우스에서 curcumin의 인슐린 저항성 개선 효능)

  • Kim, Dan Bi;Ahn, Eunyeong;Kim, Eunjung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.315-323
    • /
    • 2018
  • Rapid increase of diabetic population is a major health concern in Korea. In a trial to develop food components which can prevent and/or cure diabetes, we investigated the anti-diabetic activity of curcumin in high fat diet (HFD)-induced type 2 diabetes mellitus (T2DM) animal model. C57BL/6 mice were divided into three groups: normal diet (ND), high fat diet (HFD), and curcumin (CUR, HFD+0.02% curcumin). Mice were fed each diet for 16 weeks. CUR significantly reduced body weight gain, the levels of plasma glucose, insulin, total-cholesterol (T-C), and LDL-C, whereas increased HDL-C compared to those of HFD group. Notably, insulin signaling pathway was activated by CUR. This suggests that CUR improves obesity-associated T2DM by overcoming insulin resistance in part.

Anti-complement Effects of Anion-Substituted Poly(vinyl alcohol) Membranes

  • Ryu, Kyu-Eun;Rhim, Hyang-Shuk;Park, Chong-Won;Chun, Heung-Jae;Hong, Seung-Hwa;Kim, Young-Chai;Lee, Young-Moo
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.46-52
    • /
    • 2004
  • In a continuation of our previous studies on blood compatibility profiles of anion-substituted poly(vinyl alcohol) (PVA) membranes, in which hydroxyl groups have been replaced with carboxymethyl (C-PVA) and sulfonyl groups (S-PVA), we have studied the activation of complement components and the changes in white cell and platelet count in vitro and compared them with those of unmodified PVA, Cuprophane, and low-density polyethylene. Complement activation of fluid phase components, C3a, Bb, iC3b, and SC5b-9, and of bound phases, C3c, C3d, and SC5b-9, were assessed by enzyme-linked immunosorbent assay (ELISA) and immunoblot, respectively. The changes in the number of white cells and platelets following complement activation were counted using a Coulter counter. C-PVA and S-PVA activated C3 to a lesser extent than did PVA, which we attribute to the diminished level of surface nucleophiles of the samples. In addition, C- and S-PVA exhibit increased inhibition of Bb production, resulting in a decrease in the extent of C5 activation. Consequently, because of the reduced activation of C3 and C5, C- and S-PVA samples cause marked decreases in the SC5b-9 levels in plasma. We also found that the negatively charged sulfonate and carboxylate groups of the samples cause a greater extent of adsorbtion of the positively charged anaphylatoxins, C3a and C5a, because of strong electrostatic attraction, which in turn provides an inhibition of chemotaxis and activation of leukocytes. The ability to inhibit complement production, together with the binding ability of anaphylatoxins of the C- and S-PVA samples, leads to a prominent decrease in lysis of leukocytes as well as activation of platelets.

Dual Regulation of R-Type CaV2.3 Channels by M1 Muscarinic Receptors

  • Jeong, Jin-Young;Kweon, Hae-Jin;Suh, Byung-Chang
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.322-329
    • /
    • 2016
  • Voltage-gated $Ca^{2+}$ ($Ca_V$) channels are dynamically modulated by Gprotein-coupled receptors (GPCR). The $M_1$ muscarinic receptor stimulation is known to enhance $Ca_V2.3$ channel gating through the activation of protein kinase C (PKC). Here, we found that $M_1$ receptors also inhibit $Ca_V2.3$ currents when the channels are fully activated by PKC. In whole-cell configuration, the application of phorbol 12-myristate 13-acetate (PMA), a PKC activator, potentiated $Ca_V2.3$ currents by ~two-fold. After the PMA-induced potentiation, stimulation of $M_1$ receptors decreased the $Ca_V2.3$ currents by $52{\pm}8%$. We examined whether the depletion of phosphatidylinositol 4,5-bisphosphate ($PI(4,5)P_2$) is responsible for the muscarinic suppression of $Ca_V2.3$ currents by using two methods: the Danio rerio voltage-sensing phosphatase (Dr-VSP) system and the rapamycin-induced translocatable pseudojanin (PJ) system. First, dephosphorylation of $PI(4,5)P_2$ to phosphatidylinositol 4-phosphate (PI(4)P) by Dr-VSP significantly suppressed $Ca_V2.3$ currents, by $53{\pm}3%$. Next, dephosphorylation of both PI(4)P and $PI(4,5)P_2$ to PI by PJ translocation further decreased the current by up to $66{\pm}3%$. The results suggest that $Ca_V2.3$ currents are modulated by the $M_1$ receptor in a dual mode-that is, potentiation through the activation of PKC and suppression by the depletion of membrane $PI(4,5)P_2$. Our results also suggest that there is rapid turnover between PI(4)P and $PI(4,5)P_2$ in the plasma membrane.

Globular Adiponectin Exerts a Pro-Inflammatory Effect via IκB/NF-κB Pathway Activation and Anti-Inflammatory Effect by IRAK-1 Downregulation

  • Lee, Kyoung-Hee;Jeong, Jiyeong;Woo, Jisu;Lee, Chang-Hoon;Yoo, Chul-Gyu
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.762-770
    • /
    • 2018
  • Adiponectin, a hormone produced by adipose tissue, is very abundant in plasma, and its anti- and pro-inflammatory effects are reported. However, the mechanisms of these pro- and anti-inflammatory effects are not fully defined. Herein, we evaluated the dual inflammatory response mechanism of adiponectin in macrophages. Short-term globular adiponectin (gAd) treatment induced $I{\kappa}B{\alpha}$ degradation, $NF-{\kappa}B$ nuclear translocation, and $TNF-{\alpha}$ production in RAW 264.7 cells. Polymyxin B pretreatment did not block gAd-induced $I{\kappa}B{\alpha}$ degradation, and heated gAd was unable to degrade $I{\kappa}B{\alpha}$, suggesting that the effects of gAd were not due to endotoxin contamination. gAd activated IKK and Akt, and inhibition of either IKK or Akt by dominant-negative $IKK{\beta}$ ($DN-IKK{\beta}$) or DN-Akt overexpression blocked gAd-induced $I{\kappa}B{\alpha}$ degradation, suggesting that short-term incubation with gAd mediates inflammatory responses by activating the $I{\kappa}B/NF-{\kappa}B$ and PI3K/Akt pathways. Contrastingly, long-term stimulation with gAd induced, upon subsequent stimulation, tolerance to gAd, lipopolysaccharide, and CpG-oligodeoxynucleotide, which is associated with gAd-induced downregulation of IL-receptor-associated kinase-1 (IRAK-1) due to IRAK-1 transcriptional repression. Conclusively, our findings demonstrate that the pro- and anti-inflammatory responses to gAd in innate immune cells are time-dependent, and mediated by the activation of the $I{\kappa}B/NF-{\kappa}B$ pathway, and IRAK-1 downregulation, respectively.

Crystalline Qualities and Surface Morphologies of As-Grown $YBa_2Cu_3O_{7-x}$ Thin Films on MgO(100) Substrate by Reactive Coevaporation Method (반응성 동시 증착법에 의한 As-grown $YBa_2Cu_3O_{7-x}$ 박막의 결정 특성 및 표면형상에 관한 연구)

  • Jang, Ho-Yeon;Watanabe, Yasuhiro;Doshida, Yutaka;Shimizu, Kenji;Okamoto, Yoichi;Akibama, Ryozo;Song, Jin-Tae
    • Korean Journal of Materials Research
    • /
    • v.1 no.2
    • /
    • pp.93-98
    • /
    • 1991
  • The as-grown $YBa_2Cu_3O_{7-x}$ superconducting thin films on MgO(100) substrate have been prepared by a reactive coevaporation method. The superconducting transition temperature, surface morphology and crystalline quality were examined as a function of the substrate temperature ranging from $450^{\circ}C$ to $590^{\circ}C$. From the reflection high energy electron diffraction (RHEED) analysis, it was found the film consisted of almost amorphous phase with a halo pattern deposited at the substrate temperature of $450^{\circ}C$. The film deposited at the substrate temperature of $510^{\circ}C$ consisted of polycrystalline phase, showing a broad ring pattern. On the other hand, for the film deposited at $590^{\circ}C$, RHEED showed spotty pattern indicating that this film consisted of single crystal phase. It has rough film surface due to the surface outgrowth. The surface outgrowth increased as the substrate temperature increased from $510^{\circ}C$ to $590^{\circ}C$. the surface outgrowth may be due to the anisotropic growth rate. The highest transition temperature obtained in this study was $Tc_{zero}$ of 83K with $Tc_{onset}$ of 88K for the film deposited at $590^{\circ}C$ using activated RF oxygen plasma.

  • PDF

An Electron Microscopic Study on the Hypothalamus of the Hibernating Bat I. Fine Structure of the Nerve Cell (동면중인 박쥐의 시상하부에 대한 전자현미경적 연구 I. 신경세포의 미세구조)

  • Kang, H.S.;Oh, Y.K.;Cho, B.P.;Lee, Y.D.
    • Applied Microscopy
    • /
    • v.15 no.2
    • /
    • pp.10-18
    • /
    • 1985
  • The posterior hypothalamus of the hibernating greater horseshoe bats (Rhinolophus ferrumequinum korai Kuroda) were observed with an electron microscope. The posterior hypothalamus is known to be closely related to the reflex responses activated by cold, and the following observations were obtained in the cellular type of nerve cells: there are three types of neurons in the posterior hypothalamus. 1. The first type of neuron was the largest, ovoid or conical in shape, the nucleus was elliptic and the nuclear envelope had many deep invaginations. The cell organelles were well developed, in particular there was an abundance of variously shaped mitochondria, and the Golgi complex and the polysomes were observed in the cytoplasm. 2. The second type of neuron was moderate in size, ovoid or elliptic in shape, the nucleus was located nearer to the plasma membrane and the nuclear envelope had. a few invaginations. The cytoplasm was rich in amount compared with that of the third type of neuron, and the cell organelles, especially the rough endoplasmic reticulum were well developed. Also lipofuscin pigments were observed. 3. The third type of neuron was the smallest in size and round in shape. The nucleus and the nucleolus were observed in the central portion of the cell body and the nuclear envelope had a few invaginations. The cytoplasm was small compared with those of the first and second types, but the rough endoplasmic reticulum, the mitechondria and the polysomes were relatively well developed. The cytoplasm was characterized by the presence of membrane-bound small bodies with a single membrane containing a fine particular substance around the rough endoplasmic reticulum and the Golgi complexes.

  • PDF

Protective Effect of Defibrotide on Splanchnic Injury following Ischemia and Reperfusion in Rats

  • Choi, Soo-Ran;Jeong, Ji-Hoon;Song, Jin-Ho;Shin, Yong-Kyoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.2
    • /
    • pp.85-94
    • /
    • 2006
  • A splanchic artery occlusion for 90 min followed by reperfusion of the mesenteric circulation resulted in a severe form of circulatory shock, characterized by endothelial dysfunction, severe hypotension, marked intestinal tissue injury, and a high mortality rate. The effect of defibrotide, a complex of single-stranded polydeoxyribonucleotides having antithrombotic effect, was investigated in a model of splanchnic artery occlusion (SAO) shock in urethane anesthetized rats. Occlusion of the superior mesenteric artery for 90 min produced a severe shock state, resulting in a fatal outcome within 120 min of reperfusion in many rats. Defibrotide (10 mg/kg body weight) 10 min prior to reperfusion significantly improved mean arterial blood pressure in comparison to vehicle treated rats (p<0.05). Defibrotide treatment also significantly attenuated in the increase of plasma amino nitrogen concentration, intestinal myeloperoxidase activity, intestinal lipid peroxidation, infiltration of neutrophils in intestine and thrombin induced adherence of neutrophils to superior mesentric artery segments. Superoxide anion and hydrogen peroxide production in $1{\mu}M$ formylmethionylleucylphenylalanine (fMLP)-activated PMNs was inhibited by defibrotide in a dose-dependent fashion. Defibrotide effectively scavenged hydrogen peroxide, but not hydroxyl radical. Treatment of SAO rats with defibrotide inhibited tumor necrosis factor-${\alpha}$, and interleukin-1${\beta}$ productions in blood in comparison with untreated rats. These results suggest that defibrotide partly provides beneficial effects by preserving endothelial function, attenuating neutrophil accumulation, and antioxidant in the ischemic reperfused splanchnic circulation

Relationship of the Signal Transduction-mediated Proteins and Enzymes to Contractility and Plasticity in Skeletal Muscles (골격근의 수축과 가소성에 대한 신호전달-매개 단백질 및 관련 효소의 상관성)

  • Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.19 no.4
    • /
    • pp.1-14
    • /
    • 2007
  • Background: It is generally accepted that skeletal muscle contraction is triggered by nerve impulse and intracellular $Ca^{2+}\;([Ca^{2+}]_i)$ released from intracellular $Ca^{2+}$ stores such as sarcoplasmic reticulum (SR). Specifically, this process, called excitation-contraction (E-C) coupling, takes place at intracellular junctions between the plasma membrane, the transverse (T) tubule L-type $Ca^{2+}$ channel (dihydropyridine-sensitive L-rype $Ca^{2+}$ channel, DHPR, also called tetrads), and the SR $Ca^{2+}$ release channel (ryanodine-sensitive $Ca^{2+}$ release channel, RyR, also called feet) of internal $Ca^{2+}$ stores in skeletal muscle cells. Furthermore, it has been reported that the $Ca^{2+-}$ dependent and -independent contraction determine the expression of skeletal muscle genes, thus providing a mechanism for tightly coupling the extent of muscle contraction to regulation of muscle plasticity-related excitation-transcription (E-T) coupling. Purpose: Expression and activity of plasticity-associated enzymes in gastrocnemius muscle strips have not been well studied, however. Methods: Therefore, in this study the expression and phosphorylation of E-C and E-T coupling-related mediators such as protein kinases, ROS(reactive oxygen species)- and apoptosis-related substances, and others in gastrocnemius muscles from rats was examined. Results: I found that expression and activity of MAPKs (mitogen-activated protein kinases, ERK1/2, p38MAPK, and SAPK/JNK), apoptotic proteins (cleaved caspase-3, cytochrome c, Ref-1, Bad), small GTP-binding proteins (RhoA and Cdc42), actin-binding protein (cofilin), PKC (protein kinase C) and $Ca^{2+}$ channel (transient receptor potential channel 6, TRPC6) was observed in rat gastrocnemius muscle strips. Conclusion: These results suggest that MAPKs, ROS- and apoptosis-related enzymes, cytoskeleton-regulated proteins, and $Ca^{2+}$ channel may in part functionally import in E-C and E-T coupling from rat skeletal muscles.

  • PDF

이온빔 보조에 의한 Al 표면의 에칭 및 산화막 형성

  • 김종민;권봉준;이주선;김명원;김무근;오성근
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.133-133
    • /
    • 2000
  • 알루미늄 산화막은 알루미늄 전해 커패시터의 유전재료로 많이 사용되고 잇다. 기존의 생산 공정은 양극 산화법에 의한 산화막 형성으로 대부분이 이러한 습식 공정으로 생산되고 있다. 이 양극 산화법 방식은 장점도 있으나 폐기물이 많이 발생되는 단점이 있다. 본 연구에서는 폐기물의 발생을 획기적으로 줄일 수 있고 산화막 형성 효율을 높일 수 잇는 방식으로 activated reactive evaporation(ARE)을 도입하였다. 이 방식은 electron-beam에 의해 알루미늄을 증착시킬 때 plasma를 챔버 내에 발생시켜 활성 반응으로 알루미늄 원자가 산소와 반응하여 기판위에 Al2O3가 증착되는 것이다. 이 방식은 기계적 작동이 단순하고 증착이 되는 여러 변수들의 독립적 조절이 가능하므로 증착을 제어하기 쉽기 때문에 바로 산업 현장에서 적용될 수 있을 것으로 전망되어 본 연구에 도입하게 되었다. 기판은 유전용량을 증가시키기 위하여 알루미늄 원박을 에칭하였다. 이것은 기판으로 쓰일 알루미늄의 표면의 표면적을 증가시키기 위한 것으로, 알루미늄 전극의 표면적을 확대시키면 유전용량이 증가된다. 99.4%의 50$\mu\textrm{m}$와 60$\mu\textrm{m}$ 두께의 알루미늄 원박을 Ar 이온빔에 의해 1keV의 에너지로 20mA로 에칭을 하였다. 에칭 조건별로 에칭상태를 조사하였다. 에칭 후 표면 상태는 AFM으로 관찰하였다. 화성 실험은 진공 챔버 내의 진공을 약 10-7 torr까지 내린 후, 5$\times$10-5 torr까지 O2와 Ar을 주입시킨 다음 filament에서 열전자를 방출시키고 1.2 kV의 electrode에 의해 가속시켜 이들 기체들의 플라즈마를 발생시켰다. e-beam에서 증발된 알루미늄과 활성 반응을 이루어 기판에 Al2O3가 형성되었다. 여러 증착 변수들(O2와 Ar의 분압, 가속 전압, bias 전압 등)과 산화막의 상태 등을 XPS(X-ray photoelectron spectroscopy), AFM(Atomic Force Microscopy), XRD(X-Ray Diffraction), EXD로 조사하였다.

  • PDF

General Pharmacology of Erythropoietin Produced by a New Recombinant DNA Technique (새로운 유전자 재조합 기술에 의하여 생산된 Erythropoietin의 일반약리작용)

  • 김영훈;정성목;임동문;조효진;정재경;김달현;박관하;이동억;김현수
    • Biomolecules & Therapeutics
    • /
    • v.2 no.4
    • /
    • pp.336-342
    • /
    • 1994
  • The general pharmacological properties of EPO were investigated in various animals administering intravenously and in vitro system. The results were as follows. 1. Central nervous system: EPO at doses of 70, 700, 7000 U/kg showed no effect In mice on general behavior, on strychnine- and pentetrazol-induced convulsion and on acetic acid-induced writhing syndrome. The hexobarbital-induced sleeping time in mice was slightly reduced by EPO at a dose of 7000 U/kg but did not change at doses of 70, 700 U/kg. The body temperature in rats was slightly decreased by EPO at doses of 700, 7,000 U/kg but the change was in normal physiological range. 2. Respiratory and cardiovascular system: EPO showed no effect on respiratory rate, blood pressure, heart rate, femoral blood flow, and electrocardiogram in anesthetized dogs at doses of 70, 700, 7000 U/kg. 3. Smooth muscle: EPO at concentrations of 70, 700 U/ml had no effect on the contractile response of isolated guinea pig ileum to histamine and acetylcholine. 4. Water and electrolytes excretion: EPO at dose above 700 U/kg increased urine volume in rats but did not affect the concentrations of $Na^{+},\;K^{+},\;Cl^{-}$ in urine. 5. Gastrointestinal system: EPO(70, 700, 7000 U/kg) had no effect on the intestinal charcoal meal propulsion 6. Blood coagulation system: The administration of EPO(70, 700, 7000 U/kg) had no effect on the plasma prothrombin time(PT) and activated partial thromboplastin time(APTT) in mice. Platelet aggregation induced by ADP and collagen was not influenced by EPO(70 U/ml, 700 U/ml). The overall results obtained indicated that EPO exerts almost no serious pharmacological effect even at a 100-fold clinical dose(7000 U/kg).

  • PDF