Anti-complement Effects of Anion-Substituted Poly(vinyl alcohol) Membranes

  • Ryu, Kyu-Eun (Department of Biomedical Sciences Catholic University) ;
  • Rhim, Hyang-Shuk (Department of Biomedical Sciences Catholic University) ;
  • Park, Chong-Won (Division of Hematology, Department of Internal Medicine, College of Medicine, Catholic University) ;
  • Chun, Heung-Jae (Department of Biomedical Sciences Catholic University) ;
  • Hong, Seung-Hwa (Blood Products Division, Biologics Evaluation Department, Korea Food and Drug Administration) ;
  • Kim, Young-Chai (School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Lee, Young-Moo (School of Chemical Engineering, College of Engineering, Hanyang University)
  • Published : 2004.02.01

Abstract

In a continuation of our previous studies on blood compatibility profiles of anion-substituted poly(vinyl alcohol) (PVA) membranes, in which hydroxyl groups have been replaced with carboxymethyl (C-PVA) and sulfonyl groups (S-PVA), we have studied the activation of complement components and the changes in white cell and platelet count in vitro and compared them with those of unmodified PVA, Cuprophane, and low-density polyethylene. Complement activation of fluid phase components, C3a, Bb, iC3b, and SC5b-9, and of bound phases, C3c, C3d, and SC5b-9, were assessed by enzyme-linked immunosorbent assay (ELISA) and immunoblot, respectively. The changes in the number of white cells and platelets following complement activation were counted using a Coulter counter. C-PVA and S-PVA activated C3 to a lesser extent than did PVA, which we attribute to the diminished level of surface nucleophiles of the samples. In addition, C- and S-PVA exhibit increased inhibition of Bb production, resulting in a decrease in the extent of C5 activation. Consequently, because of the reduced activation of C3 and C5, C- and S-PVA samples cause marked decreases in the SC5b-9 levels in plasma. We also found that the negatively charged sulfonate and carboxylate groups of the samples cause a greater extent of adsorbtion of the positively charged anaphylatoxins, C3a and C5a, because of strong electrostatic attraction, which in turn provides an inhibition of chemotaxis and activation of leukocytes. The ability to inhibit complement production, together with the binding ability of anaphylatoxins of the C- and S-PVA samples, leads to a prominent decrease in lysis of leukocytes as well as activation of platelets.

Keywords

References

  1. Artificial Kidney in The Biomedical Engineering Handbook P.M.Galletti;C.K.Colton;M.J.Lysaght;J.D.Bronzino(ed.)
  2. Blood Purif v.8 R.J.Johnson;M.D.Lelab;T.M.Sutliff;D.R.Boggs https://doi.org/10.1159/000169986
  3. ASAIO J. v.41 P.M.Galletti;P.Aebischer;M.J.Lysaght
  4. J. Biomed. Mater. Res. v.15 Y.Ikada;H.Iwata;F.Horii;T.Matsunaga;M.Tanigushi;M.Suzuki https://doi.org/10.1002/jbm.820150507
  5. Biomaterials v.18 N.A.Hoenich;C.Woffindin;S.Stamp;S.J.Roberts;J.Turnbull https://doi.org/10.1016/S0142-9612(97)00062-8
  6. J. Biomater. Sci. Polym. Ed. v.7 J.R.Frautschi;R.C.Eberhart;J.A.Hubbel;B.D.Clark;J.A.Gelfaud https://doi.org/10.1163/156856296X00471
  7. Poly(vinyl alcohol)-Development A.Finch
  8. Polym. J. v.22 H.J.Chun;J.J.Kim;K.Y.Kim https://doi.org/10.1295/polymj.22.347
  9. Polym. J. v.22 H.J.Chun;J.J.Kim;S.H.Lee;K.Y.Kim;U.Y.Kim https://doi.org/10.1295/polymj.22.477
  10. Macromol. Res. v.11 K.E.Ryu;H.Rhim;C.W.Park;H.J.Chun;J.J.Kim;Y.M.Lee https://doi.org/10.1007/BF03218975
  11. J. Appl. Polym. Sci. v.85 T.S.Suh;C.K.Joo;Y.C.Kim;M.S.Lee;H.K.Lee;B.Y.Choe;H.J.Chun https://doi.org/10.1002/app.10870
  12. Korea Polym. J. v.8 G.S.Khang;J.M.Rhee;J.H.Lee;I.W.Lee;H.B.Lee
  13. Korea Polym. J. v.9 G.S.Khang;M.K.Choi;J.M.Rhee;S.J.Lee;H.B.Lee;Y.Iwasaki;N.Nakabayashi;K.Ishihara
  14. J. Appl. Polym. Sci. v.72 S.Y.Nam;H.J.Chun;Y.M.Lee https://doi.org/10.1002/(SICI)1097-4628(19990411)72:2<241::AID-APP9>3.0.CO;2-B
  15. High Resolution XPS of Organic Polymers G.Beamson;D.Briggs
  16. Immunology and the Complement System in Biomaterials Science R.J.Johnson;B.D.Ratner(ed.);A.S.Hoffman(ed.);F.R.Schoen(ed.);J.E.Lemons(ed.)
  17. J. Biomed. Mater. Res. v.37 C.H.Gemmell https://doi.org/10.1002/(SICI)1097-4636(19971215)37:4<474::AID-JBM5>3.0.CO;2-I
  18. Biomaterials v.23 J.Wettero;A.Askendal;T.Bengtsson;P.Tengvall https://doi.org/10.1016/S0142-9612(01)00203-4
  19. J. Mater. Sci.:Mater. Med. v.5 M.Berger;B.Broxup;M.V.Sefton https://doi.org/10.1007/BF00120343
  20. Transplantation v.55 S.Miyagawa;R.Shirakura;G.Matsumiya;N.Fukushima;S.Nakata;H.Matsuda;M.Matsumoto;H.Kitamura;T.Seya https://doi.org/10.1097/00007890-199304000-00004
  21. Biomaterials v.6 M.Mauzac;F.Maillet;J.Jozeforvicz;M.D.Kazatchkine https://doi.org/10.1016/0142-9612(85)90040-7
  22. J. Clin. Apheresis v.13 Y.Matsuki;K.Suzuki;M.Kawakami;T.Ishizuka;T.Hidaka;H.Nakamura https://doi.org/10.1002/(SICI)1098-1101(1998)13:3<108::AID-JCA3>3.0.CO;2-Z