• Title/Summary/Keyword: planting date

Search Result 299, Processing Time 0.034 seconds

Dry Matter Yield and Feed Value of Oat Plant at Various Planting and HaNesting Date in Fall (가을 재배 사초용 연맥의 파종 시기 및 수확시기별 건물 수량과 사료가치)

  • Sin, Jeong Nam;Kim, Byeong Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.13 no.4
    • /
    • pp.294-299
    • /
    • 1993
  • This expeiment was conducted to evaluate the effect of the different planting and harvest date on dry matter yield and feed value of forage oat (Avena sativa L.). Seeds were planted on September 1 (first), September 11 (second) and September 21 (third planting date) by hand between rows 30cm and harvest were achieved on November 7 (first) and November 19 (second harvest date) 1992. 1. The plant height was influenced by planting and harvest date. the first planting date showed the tallest plant height. 2. Dry matter (DM) content decreased with delaying planting date from first to third planting date, DM varied from 15.1 to 13.5% and increased with delaying harvest date from first to second harvest date at the same planting date. 3. Leaf weight ratio increased delaying planting date from first to third planting date, varied from 52 to 77%. 4. The content of crude protein increased with delaying planting date from first to third planting date, varied from 14.3 to 25.4% NDF and ADF contents were influenced by planting date and harvest date, it was decreased with delaying planting date. 5. The dry matter yields per ha decreased with delaying planting date: it was 6, 705, 5, 520, and 2, 315 kg at first, second and third planting date, respectively. Significant difference has been obtained among planting date(P<.01). The dry matter yields increased with delaying harvest: it was 4, 027 kg at first and 5, 667 kg at second harvest(P<.01). 6. According to the results obtained from this study. it is suggested that planting date on September 1 and harvest date on November 19 would be recomendable for fall oat forage production.

  • PDF

Effect of Planting Date and Plant Density on Yield and Quality of Industrial Rapeseed in Spring Sowing

  • Kwon, Byung-Sun;Jung, Dong-Soo
    • Plant Resources
    • /
    • v.8 no.2
    • /
    • pp.91-95
    • /
    • 2005
  • In spring, to determine the optimal planting date and plant density of rapeseed in southern areas of Korea. $Taiwan^{\#1}$ variety for spring sowing, the highest yielding variety was grown under five different planting date and plant density. Yield components such as plant height, ear length, number of seedling stand per $m^2$, number of per ear and seed set percentage were highest at the plots with Mar. 5 of planting date and 50/20cm drilling of plant density. Yield of seed, oil, gas and 1,000 grains weight and erucic acid content were highest at the Mar. 5 of planting date and 50/20cm drilling of plant density. Judging from the results reported above, at optimum planting date and plant density of rapeseed seemed too be Mar. 5 of planting date and 50/20cm plant density in spring sowing.

  • PDF

Effect of planting density and seeding date on the tiller occurrence, growth and yield of sorghum (Sorghum bicolor L.)

  • Han, Tae Kyu;Yoon, Seong Tak;Jeong, In Ho;Kim, Young Jung;Yu, Je Bin;Yangjing, Yangjing;Ye, Min Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.348-348
    • /
    • 2017
  • This experiment was conducted to investigate the aspect of tiller occurrence, growth and yield of sorghum according to planting density and sowing date. The subject of this experiment is to supply basic data to inhibit non-productive tillers uneconomical and cumbersome for mechanical harvesting. Also another subject was to evaluate optimum planting density and sowing date in central district area. Total number of tillers was more in 80cm ridge than 60cm ridge and it was increased as the planting distance was wider from 15cm to 30cm on the each ridge. Ratio of effective tillers was higher in 60cm ridge than 80cm ridge and it was decreased as planting distance was wider from 15cm to 30cm. The lower the planting density, the more increased total number of tillers, whereas effective tillers were decreased as planting density was high. Average of total number of tillers of three varieties was higher in sowing date of 2 May (1st sowing date), whereas ratio of effective tillers was the highest in sowing date of 23 May (2nd sowing date). Hwanggeumchal showed the highest total number of tillers (1.2 tillers), while Moktaksusu had the lowest total number of tillers (0.8 tillers) among three varieties. There were no significant difference between planting density and days to heading and ripening date from seeding. Culm length increased as planting density was high, but ear length, grains per ear and 1000 grain weight were decreased on the other hand. The highest yield of sorghum per 10a was obtained from $60{\times}20cm$ planting density among 6 planting densities.

  • PDF

Effect of Plant Density on Growth and Sugar Yield of Sweet Sorghum in Jeju Island

  • Oh, Hyeon-Do;Kim, Han-Lim;Kang, Young-Kil;Kim, Chan-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.1
    • /
    • pp.29-34
    • /
    • 2001
  • A sweet sorghum [Sorghum bicolor (L.) Moench] cultivar was planted on 9 and 30 June 2000 at plant densities of 4, 6, 8, 10, and 12 plants $m^{-2}$ to determine the optimum plant density in Jeju region. There were no significant planting date x plant density interactions for most traits measured. Delaying planting from 9 to 30 June delayed 21 days in heading date, and significantly decreased plant height, the number of productive stems $m^{-2}$/, and lodging. Fresh stem yield tended to be higher at the 9 June planting date than at the 30 June planting date, but total sugar and ethanol yields were not significantly affected by planting date. Percentage of soluble solid was higher at the 30 June planting date compared with the 9 June planting date. Fresh stem, total sugar, and ethanol yields quadractically increased from 22.9 to 36.7 $t^{-1}$, from 1.66 to 2.54 $t^{-1}$, and from 945 to 1440 $L^{-1}$, respectively, with increasing plant density. The optimal plant densities for the maximum fresh stem, total sugar, and ethanol were estimated to be 10.7, 9.6, and 9.9 plants $m^{-2}$ respectively.

  • PDF

Effect of Planting Date and Hybrid on the Agronomic Characteristics, Forage Production and Feed Value of Corn for Silage (파종시기 및 품종이 사일리지용 옥수수의 생육특성, 사초생산성 및 사료가치에 미치는 영향)

  • Bae, Myeong Jin;Chung, Sung Heon;Kim, Jong Duk
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.1
    • /
    • pp.54-60
    • /
    • 2022
  • The planting date of corn for silage has been delayed because of spring drought and double cropping system in Korea. This experiment was conducted to evaluate agronomic characteristics, forage production and feed value of corn at April and May in 2019. Experimental design was a split-plot with three replications. Planting dates (12 April and 10 May) were designated to the main plot, and corn hybrids ('P0928', 'P1543' and 'P2088') to the subplot. The silking days of the early planting date (12 April) was 79 days and that of the late planting date (10 May) was 66 days (p<0.0001), however, there were no significant differences among the corn hybrids. Ear height of the late planting date was higher than that of the early planting (p<0.05), while there were no significant differences in plant height of corn. Insect resistance at the early planting was lower than that of late planting (p<0.05), however, lodging resistance was no significant difference at planting date. The rice black streaked virus (RBSDV) infection of early planting was 3.7% and that of late planting was 0.3% (p<0.001). Dry matter (DM) contents of stover, ear and whole plant had significant difference at planting date (p<0.05). And differences in ear percentages were observed among the corn hybrids (p<0.01). And ear percentages of early maturing corn ('P0928') was higher than for other hybrids. Ear percentage at the early planting date was higher than that at the late planting date (p<0.01). DM and total digestible nutrients (TDN) yields had significant difference at planting date, however, there were no significant differences among the corn hybrids. DM and TDN yields at the late planting (21,678 kg/ha and 14,878 kg/ha) were higher than those of the early planting (13,732 kg/ha and 9,830 kg/ha). Crude protein content at the early planting date was higher than that of the late planting. Acid detergent fiber content of the late planting was lower than that of the early planting date (p<0.01), while there were no significant neutral detergent fiber content difference among the corn tested. Calculated net energy for lactation (NEL) and TDN at the early planting were higher than those of at the late planting (p<0.01). Results of this our study indicate that the late planting date (May) is better than early planting date (April) in forage yield and feed value of corn. Therefore, the delay of planting date by May was more suitable for use in cropping system.

Effect of sowing date and planting distance on the growth and yield of sesame in the middle area of Korea.

  • Kim, Ki Hyun;Youn, Cheol Ku;Kim, In Jae;Lee, Hee Do;Hong, Seong Taek;Hong, Eui Yon;Woo, Sun Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.250-250
    • /
    • 2017
  • Studies were conducted to select the optimum sowing date and planting density of sesame in the middle area of Korea. To select the optimum sowing date, sesame seeds sowed from 20 April to 7 July with 15-day intervals. To select the optimum planting density, sesame seeds investigated under four different planting distances ($30{\times}10,\;30{\times}15,\;30{\times}20$, and $30{\times}25cm$)respectively in the experimental field. As seeding date was delayed, days to emergence were shortened flowering and maturing date were delayed. Delayed sowing date resulted in decreased length, capsule setting stem length and number of capsules, and branchs per plant. Number of Capsules was high sowing date on 5 May in the range of 90~95ea/plant in sesame. Also yield of sesame seeds was most high on 5 May in the range of 142kg/10a by sowing date. Sowing date up to 5 May showed no effect on grain yield, but from 5 June to 5 July decreased 27%, 68% and 86%, respectively. For all planting distances, weight of 1,000 grain was not significantly different. However, number of branches and capsules tended to increase. Number of Capsules was high planting distance of $30{\times}20cm$ and $30{\times}25cm$ in the range of 146.7~165.7ea/plant in the Geonbaekkae. Areumkkae also showed the same tendency on planting distance of $30{\times}20cm$ and $30{\times}25cm$ in the range of 122.0~147.5ea/plant, respectively. Yield of Geonbaekkae and Areumkkae seeds was most high 116kg/10a, 117kg/10a, respectively on planting distance $30{\times}20cm$. Decreased in the planting distance of sesame has increased the incidence of disease and lodging. Based on the results, we suggest a planting distance of $30{\times}20cm$ maximal growth and yield of sesame in the middle area of Korea. Considering growth characteristics, sesame yield ability, the optimum sowing date was 5 May and optimum planting pattern was founded to be two rows planting in one ridge and planting densities was $30{\times}20cm$.

  • PDF

Effect of Sowing Date and Plant Density on Yield of Rapeseed in Autumn Sowing

  • Kwon Byung-Sun;Choi Seung-Sun;Lim Jung-Mook;Choi Gab-Lim;Kim Sang-Kon
    • Plant Resources
    • /
    • v.8 no.3
    • /
    • pp.258-262
    • /
    • 2005
  • In autumn, to determine the optimal planting date and plant density of rapeseed in southern areas of Korea, Yudal variety for autumn sowing, the highest yielding variety was grown under three different planting dates and five different plant densities. Yield components such as plant height, ear length, number of seedling stand per $m^2$, number of branches and pod length were highest at the plots with Sep. 30 of planting date and 30/20 cm drilling of plant density. Yield of seed, oil and 1,000 grains weight were highest at the Sep.30 of planting date and 30/20 cm drilling of plant density. Judging from the results reported above, at optimum planting date and plant density of rapeseed seemed to be Sep.30 of planting date and 30/20cm plant density in autumn sowing.

  • PDF

Effects of Planting Dates on Growth and Yield of Soybean Cultivated in Drained-Paddy Field

  • Cho Jin-Woong;Lee Jung-Joon;Kim Choong-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.4
    • /
    • pp.325-330
    • /
    • 2004
  • This study was carried out to determine adequate planting date, to compare the growth characteristics between early and late maturing cultivars, and to provide the data for the cultivation techniques of soybean [Glycine max (L.) Merr.] in double cropping system with winter crops on paddy field in Korea. Cultivars were planted on 26 May, 16 June, and 7 July with a planting density of $70cm(row\;widtb)\;{\times}\;10cm$ (planting spacing). Seed yield of soybean planted on June 16 and July 7 was approximately $37\%\;and\;53\%$, respectively, less than that of conventional planting date of May 26 in Pungsan-namulkong, and planted on June 16 and July 7 was about $30\%\;and\;37\%$, respectively, less then that of conventional planting date of May 26 in Hanamkong. The number of pods and seeds per plant decreased as planting date delayed. Seed weight increased in Pungsan-namulkong but decreased in Hannamkong as planting date delayed. The flowering date was late in delayed planting plots, but it was shorted for days from emergence to flowering and from emergence to maturity. The plant height of Hannamkong was greater than Pungsan-namulkong from the emergence to flowering stages, but in contrast, it was greater in Pungsan-namulkong than Hannamkong after flowering stage (50d after emergence) when it planted on May 26. There were no significant differences between two soybean cultivars at planting dates of June 16 and July 7. Leaf number, leaf area, and dry matter were also reduced by late planting, and Both of them were shown in high reduction at the later planting. There was a high significant difference at the flowering $(r\;=\;0.87^{**})$ and pod formation $(r\;=\;0.91^{**})$ stages between leaf dry matter and seed yield. Crop growth rate (CGR) was greater at $R2\~R3$ growth stages compared to $R3\~R4\;or\;R4\~R5$ growth stages in two soybean cultivars and the greatest CGR was obtained at planting date of May 26 in two soybean cultivars except for R4-R5 growth stage in Pungsan-namulkong. There was a highly significant positive difference between the seed yield and the leaf area index (LAI) across R3 to R4 and R2 to R3 stages. The photosynthetic rate $(P_N)$ of the uppermost leaf position had no significant difference among planting dates and between two soybean cultivars. However, $P_N$ of the $7^{th}$ leaf position increased as the planting date delayed.

Effect of Planting Time on Seed Production of Vegetable Soybean at Different Locations (풋콩 재배지에 따른 파종시기가 종자생육에 미치는 영향)

  • Baek, In-Youl;Shin, Doo-Chull;Park, Chang-Kie;Lee, Jin-Mo;Suh, Hyung-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.1
    • /
    • pp.44-51
    • /
    • 1995
  • This investigation was conducted to determine the effect of the optimum planting date and place for good seed production on growth variation, grain yields, different of variety, infection of seed by fungi, and seed germination and vigor after room storage. Early maturity Korean soybean variety, Keunolkong, and introduced vegetable soybean variety, Fukura-edamame, were planted at field of YAES. and high cool land of Sajapyong in Milyang(altitude, 850m) on May 15 (early), June 15 (mid.), and July 15 (late) in 1991. The emergence and vegetative period gradually increased in the early planting date. The grain yield, seed weight, pod number, healthy grain yield also increased when Keunolkong was planted on early date. The healthy seed rate, Keunolkong increased in the early planting date, whereas that of Fukura also increased in the late planting date. Infection ratio of grain to phomopsis seed decay (Phomopsis spp. ' Diaporthe phaseolorum) in Fukura steadily increased in the early planting date. Infection ratio of grain to purple seed stain (Cercospora kikuchii) generally increased in the mid and late planting date. The seed germination and seedling vigor after room storage from five to six months gradually increased in the late planting date. And seed germination of Fukura rapidly decreased in the early planting date. Therefore, the optimum planting date for good seed production in early maturity vegetable soybean was June 15 in terms of harvesting time avoid a high temprature and humidity.

  • PDF

Yield and Quality of Silage Corn as Affected by Hybrid Maturity, Planting Date and Harvest Stage

  • Kim, J.D.;Kwon, C.H.;Kim, D.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.12
    • /
    • pp.1705-1711
    • /
    • 2001
  • Silage corn (Zea mays L) is grown extensively in livestock operations, and many managements focus on forage yield. This experiment was conducted at Seoul National University (SNU) Experimental Livestock Farm, Suwon in 1998. We determined the effect of planting date and harvest stage on forage yield and quality responses of corn hybrids (five relative maturity groups). The five maturity groups (100 d, 106 d, 111 d, 119 d and 125 d) were planted on 15 April and 15 May, and harvested at maturity stages (1/3, 1/2 and 2/3 kernel milkline). Whole plant dry matter (DM) and ear percentages had significant differences among corn hybrids. Ear percentages of early maturing corns (100 d and 106 d) were higher than for other hybrids. Ear percentage at the early planting date was higher than that at the late planting date for all corn hybrids. The DM and total digestible nutrients (TDN) yields of the 106 d and 111 d corn hybrids were higher than other hybrids, and the DM and TDN yields at the early planting date were higher than that at the late planting date. The acid detergent fiber (ADF) and neutral detergent fiber (NDF) percentages were greater for the late maturity corn hybrids. For plants of the early planting date, the ADF and NDF percentages were lower than for those of late planting date for hybrids. From the comparison among harvest stages, ADF and NDF percentages were decreased as harvest stage progressed. The TDN, net energy for lactation (NEL), and cellulase digestible organic matter of dry matter (CDOMD) were decreased as maturity of corn hybrid delayed. The TDN, NEL, and CDOMD values at the early planting date were higher than those at the late planting date among for corn hybrids. From the comparison among harvest dates, TDN, NEL, and CDOMD values were increased as harvest stage progressed. The correlation coefficient for DM percentage of grain at harvest with DM and TDN yields were 0.68*** and 0.76***, respectively. And the correlation coefficient for ear percentage with ADF, NDF, and CDOMD were -0.81***, -0.82*** and 0.73***, respectively. Our study showed differences of silage corn in forage production and quality resulting from hybrid maturity, planting date, and harvest stage. We believe that for the best silage corn, selection of the hybrid and best management practices are very important.