• Title/Summary/Keyword: plant-based meat

Search Result 58, Processing Time 0.024 seconds

The Impact of Plant-Based Non-Dairy Alternative Milk on the Dairy Industry

  • Park, Young Woo
    • Food Science of Animal Resources
    • /
    • v.41 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • Vegetarians have claimed and actively promoted the advantages of plant-based alternative milks as the best option for human nutrition and health, compared to the natural dairy milk. However, numerous scientific evidences and reports have demonstrated that the natural milk possesses more beneficial nutrients and bioactive components than artificially manufactured plant-derived milks. The biochemical and nutritional advantages and functionalities of natural dairy milk cannot be replaced by man-made or crafted plant-based beverage products. On the other hand, the tremendous increase in production and consumption of the plant-based alternative milks in recent years has led a serious business downturn in traditional roles and stability of the dairy industry, especially in the major dairy producing Western countries. Although plant-based milk alternatives may have some benefits on nutrition and health of certain consumers, the plant-derived alternative milks may not overshadow the true values of natural milk. Milk is not a high fat and high cholesterol food as animal meat products. Unlike plant-based alternative milks, natural milk contains many bioactive as well as antiappetizing peptides, which can reduce body weight. It has proven that taking low-fat, cultured and lactase treated milk and dairy products with other diversified nutritionally balanced diets have been shown to be healthier dietary option than plant-based milk/foods alone.

Effects of Animal Welfare-Certified Rearing Systems on the Blood Parameters and Meat Quality Characteristics of Broilers at the Farm Level in Korea

  • Jeon, Jin-Joo;Kim, Hee-Jin;Kim, Hye-Jin;Kang, Hwan-Ku;Kim, Chan-Ho;Kim, Hyun-Soo;Kang, Bo-Seok;Kim, Sang-Ho;Jang, Aera
    • Food Science of Animal Resources
    • /
    • v.42 no.1
    • /
    • pp.128-141
    • /
    • 2022
  • Compared to the conventional farms (CF) rearing of broilers, the rearing management of animal welfare-certified farms (AF) must provide low stocking density, perch, air regulation, and feeding plant-based protein. This study aimed to compare the effects of rearing management in CF and AF on blood parameters, meat quality, and bioactive compound content in Ross 308 broiler chickens at the farm level before transportation to slaughterhouses. Blood and meat samples were obtained at 28-35-dayold chickens from three CF and three AF. In blood samples, low-density lipoprotein cholesterol (p<0.05), triglyceride (p<0.001), glucose (p<0.01), total protein (p<0.001), albumin (p<0.01), and white blood cell (p<0.001) levels as well as the heterophil/ lymphocyte ratio [stress index (SI), p<0.001] were lower in broilers from AF than in CF. In meat samples, shear force (p<0.001, p<0.05), and carnosine contents (p<0.001, p<0.05) in both breast and thigh meat from AF were higher than those in meat from CF. The contents of linoleic acid (p<0.001), α-linolenic acid (p<0.001), and eicosapentaenoic acid (p<0.05) were higher in the samples from AF than those from CF. This study reveals that such differences are influenced by the different rearing factors in nutrition, housing, and management practices between CF and AF. Supplementation of plant-based protein and enough space to move due to lower stocking density accounts for the large differences between them. These results can be used as preliminary data showing that the AF system reduces the SI and enhances carnosine and polyunsaturated fatty acids levels in chicken meat at the farm level before transportation.

Monitoring Hazards to Verify the Safety of Plant-Based Meat Alternatives (식물성 대체육의 안전성 검증을 위한 위해요소 모니터링)

  • Ayeong Ma;Eun Sung Shin;Seon-A Son;Tai-Sun Shin;Hyun-Jung Chung
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.2
    • /
    • pp.83-94
    • /
    • 2024
  • The proportion of plant-based meat alternative (PBMA) consumers has recently increased in Korea. This is due to several reasons including protecting the environment, satisfying preferences, maintaining health, and improving eating habits. Accordingly, many companies produce and sell alternative meat using various materials. Alternative meats are classified into plant (such as soybeans and wheat), seaweed, insect, and cultured meats, depending on the raw materials used in manufacturing. PBMA is sold after undergoing processes such as grinding, seasoning, and molding. Therefore, monitoring the presence of any hazardous elements during this process is essential. Accordingly, in this study, we analyzed the harmful components of nine domestically distributed PBMA that are most easily accessible to consumers. After extracting fat from the samples and analyzing the rancidity level, samples F, G, and I were highly rancid. Trace amounts of aflatoxin were detected in samples A and B, but confirmed to be within the range. Cd and Pb were not detected in any sample. We hope that this study will help establish methods to ensure the safety of domestically sold PBMA.

Growth Performance, Meat Yield, Oxidative Stability, and Fatty Acid Composition of Meat from Broilers Fed Diets Supplemented with a Medicinal Plant and Probiotics

  • Hossain, Md. Elias;Kim, Gwi-Man;Lee, Sung-Ki;Yang, Chul-Ju
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.8
    • /
    • pp.1159-1168
    • /
    • 2012
  • The experiment was carried out to investigate the effects of Alisma canaliculatum with probiotics (ACP) on the growth performance, meat composition, oxidative stability, and fatty acid composition of broiler meat. Sixteen probiotic strains were tested for their levels of acid, bile, and heat tolerance. Among them, Lactobacillus acidophilus KCTC 3111, Enterococcus faecium KCTC 2022, Bacillus subtilis KCTC 3239, and Saccharomyces cerevisiae KCTC 7928 were selected for use in ACP. Exactly 140 Ross broiler chicks were assigned to four dietary treatments in five replications for 5 wks in a completely randomized design. The dietary treatments were NC (Negative control; basal diet), PC (Positive control; basal diet with 0.005% Chlortetracycline), ACP-0.5% (basal diet with 0.5% ACP powder), and ACP-1% (basal diet with 1% ACP powder). According to the results, body weight of the broilers increased, and feed conversion ratio improved in the ACP-0.5% group compared to the NC group (p<0.05). Crude protein content of breast meat was higher (p<0.05) in the ACP-0.5% group, whereas crude fat content of thigh meat was lower (p<0.05) in the supplemented groups. Breast meat absolute and relative weights were both higher (p<0.05) in the ACP groups compared to the control group. Further, ACP diets increased gizzard and decreased large intestine relative weights, whereas kidney relative weight decreased upon the addition of a higher level (1%) of ACP (p<0.05). Thiobarbituric acid reactive substances values of breast and thigh meats were reduced (p<0.05) by ACP supplementation compared to control. Regarding the fatty acid composition of breast meat, arachidonic acid, docosahexaenoic acid, PUFA, and n6 fatty acid levels decreased (p<0.05) in the ACP groups, whereas the levels of linoleic acid, PUFA, PUFA/SFA, and n6 fatty acid in thigh meat decreased (p<0.05) by ACP and PC diets. It can be suggested based on the study results that ACP-0.5% diet could be an effective feed additive for broilers.

Fate and Risk Comparison of Foodborne Pathogens in Raw Chicken, Pork, and Beef Meat at Various Temperatures

  • Yoon Ki Sun
    • Journal of the FoodService Safety
    • /
    • v.3 no.2
    • /
    • pp.49-58
    • /
    • 2022
  • The objectives of this study were to investigate the behavior characteristics of pathogenic E. coli, Salmonella Typhimurium, Campylobacter jejuni, and Listeria monocytogenes in various kinds of meat (beef, chicken, and pork) and to compare their risk using FDA-iRISK. The growth of S. Typhimurium in chicken and pathogenic E. coli in pork and beef was well supported and posed a high risk. A similar trend was observed in the risk comparison results using the iRISK. When comparing total disability adjusted life years (DALY) per year based on the kinds of meat, chicken was the highest (88.2), followed by pork (58.5) and beef for "yukhoe" (18.8). When comparing scenarios grouped by bacteria, The highest total DALYs per year was observed with pathogenic E. coli (121), followed by S. Typhimurium (44.8) and L. monocytogenes (1.67E-3). These results indicate that the risk of combining meat and foodborne pathogens varies under the same distribution environment. Thus, strict management and supervision are required to store and deliver raw meat to prevent cross-contamination among the raw meats at the processing plant and retail market.

Dietary Fat and Physical Activity in Relation to Breast Cancer among Polish Women

  • Kruk, Joanna;Marchlewicz, Mariola
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2495-2502
    • /
    • 2013
  • Background: Dietary fat has been inconsistently associated with the risk of breast cancer. The purpose of this study was to examine the relationship between meat and animal and plant fat intake and breast cancer risk in subgroups by total lifetime physical activity, using data from a case-control study conducted in the Region of Western Pomerania, Poland. Materials and Methods: The study included 858 women with histological confirmed breast cancer and 1,085 controls, free of any cancer diagnosis. The study was based on a self-administered questionnaire including questions about socio-demographic characteristics, current weight and height, reproductive factors, family history of breast cancer and lifestyle habits. Unconditional logistic regression was performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Results: High animal fat intake significantly increased OR from 1.7 times (OR=1.66, 95%CI=1.07-3.59) to 2.9 times (OR=2.9, 95%CI=1.37-6.14) independent of physical activity level, comparing the third versus the lowest quartile. Women with a high intake of red meat or processed meat and low physical activity showed increased risk of breast cancer: OR=2.70, 95%CI=1.21-6.03 and 1.78, 95%CI=1.04-3.59, respectively. The plant fat dietary pattern was negatively associated with breast cancer in sedentary women (OR=0.57, 95%CI=0.32-0.99). Conclusions: These results indicated that a diet characterized by a high consumption of animal fat is associated with a higher breast cancer risk in sedentary women, while consumption of plant fat products may reduce risk in the same group.

Prevalence of pale, soft, and exudative (PSE) condition in chicken meat used for commercial meat processing and its effect on roasted chicken breast

  • Karunanayaka, Deshani S.;Jayasena, Dinesh D.;Jo, Cheorun
    • Journal of Animal Science and Technology
    • /
    • v.58 no.7
    • /
    • pp.27.1-27.8
    • /
    • 2016
  • Background: Studies on prevalence of pale, soft, exudative (PSE) condition in Sri Lankan poultry industry is minimal. Hence, the objective of present study was to determine the incidence of PSE chicken meat in a commercial meat processing plant and to find out its consequences on meat quality traits of roasted chicken breast. Method: A total of 60 breast fillets were randomly selected, evaluated based on color L* value, and placed into 1 of 2 categories; PSE (L* > 58) or normal meat ($L*{\leq}58$). A total of 20 breast fillets (10 PSE and 10 normal) were then analyzed for color, pH, and water holding capacity (WHC). After processing those into roasted chicken breast, cooking loss, color, pH, WHC, and texture values were evaluated. A sensory evaluation was conducted using 30 untrained panelists. Results: The incidence of PSE meat was 70 % in the present experiment. PSE fillets were significantly lighter and had lower pH values compared with normal fillets. Correlation between the lightness and pH was negative (P < 0.05). Although there was no significant difference in color, texture, and WHC values between the 2 groups after processing into roasted chicken breast (P > 0.05), an approximately 3 % higher cooking loss was observed in PSE group compared to its counterpart (P < 0.05). Moreover, cooking loss and lightness values showed a significant positive correlation. Nevertheless, there were no significant differences in sensory parameters between the 2 products (P > 0.05). Conclusions: These results indicated that an economical loss can be expected due to the significantly higher cooking loss observed in roasted breast processed from PSE meat.

Validation of Korean Meat Products and Processed Cheese for the Detection of GMO using p35S and tNOS Primers

  • Shin, Hyo-Jin;Heo, Eun-Jeong;Moon, Jin-San;Kim, Ji-Ho;Kim, Young-Jo;Park, Hyun-Jung;Yoon, Yo-Han;Kim, Jin-Man;Wee, Sung-Hwan
    • Food Science of Animal Resources
    • /
    • v.31 no.5
    • /
    • pp.658-662
    • /
    • 2011
  • In this study, 543 samples of press hams, sausages, processed ground meat and processed cheese acquired from retail markets in Seoul and Gyeonggi province in Korea from 2005 to 2010 were monitored using a one-step multiplex polymerase chain reaction (PCR) method that involves the amplification of specific soya or maize endogenous genes and the amplification of 35S promoter (p35S) and nopaline synthase terminator (tNOS) for GMO detection. Among the 543 samples, 477 samples were amplified for maize and/or soybean endogenous genes. Although one sausage sample collected in 2008 showed amplification of tNOS, the result was assumed to be false positive based on the results from further tests of other sausage samples of the same brand. Our results demonstrate the absence of GM soya and/or maze of livestock products in the Korean market during 2005-2010. In addition, the one-step multiplex PCR using previously constructed primer sets appears to be useful as a screening method for the detection of GMOs in processed livestock products. However, more specific methods should be established and employed to detect the event-specific GM gene for positive reaction samples by screening tests in processed livestock products.