• Title/Summary/Keyword: plant simulator

Search Result 285, Processing Time 0.032 seconds

Study of Dynamic Engineering Simulator for Oxy-PC Power Plant (Oxy-PC 발전 플랜트용 Dynamic Engineering Simulator 개발에 관한 고찰)

  • Yu, Kwang-Myung;Kim, Jong-An
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1848-1849
    • /
    • 2011
  • Oxy-PC 발전시스템은 화석 연료를 연소하는 과정에서 발생하는 다량의 이산화탄소를 회수처리 하기위해 고려되고 있는 방법 중 하나이며, 신규 발전 시스템은 물론이며 기존 발전시스템에도 개조 과정을 거쳐 적용이 용이한 장점이 있다. 하지만 현재 국내에 해당 시스템의 적용 사례는 없을 뿐만 아니라 설계 기술의 확보도 부족한 실정이다. 따라서 순산소 연소 시 발생하는 복합적인 문제를 사전에 예측하고 시스템 구현 과정에서 발생되는 시행착오를 최소화하기 위해서는 순산소 연소 공정모델을 반영한 Dynamic Engineering Simulator 개발이 요구된다. 본 논문에서는 Oxy-PC 발전 시스템의 특징을 기존 공기 연소 발전 시스템과 비교하여 설명하고 Oxy-PC 발전 플랜트용 Dynamic Engineering Simulator 개발 절차에 대해 기술한다.

  • PDF

A Study on the Development of a Boiler Control System Simulator for Evaluation of the Fault Tolerant Control System (FTCS의 성능시험을 \ulcorner나 보일러 제어시스템 시뮬레이터의 개발에 관한 연구)

  • ;;;Zeungnam Bien
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.11
    • /
    • pp.786-795
    • /
    • 1988
  • In this paper a boiler control system simulator is designed and inplemeted in order to evaluate performance of the Fault Tolerant Control System. It simulates a boiler control system of a thermal power plant containtng boiler process, peripheral units and analog controller. The simulator uses a low order linear model for boiler first order models for the peripheral unit. Specifically the model of the analog controller is modularized and transformed to digital form if order to be implemented using a micro-processor board. The experimental results show the usability of the developed simulator for the performance test of the FTCS.

  • PDF

A realization of simulator for reliability verification on turbine controller for boiler feed Pump (급수펌프 구동용 증기터빈 제어기의 신뢰성 검증을 위한 시뮬레이터 구현)

  • Choi, I.K.;Jeong, W.J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2307-2309
    • /
    • 2002
  • A simulator had been developed and will be used for reliability verification on turbine control programs for boiler feed pump in power plant prior to its actual operation in field. A mathematical model on thermal dynamics pertaining to prime mover steam turbine and pump was realized and included in this simulator. Also, many design and operating data acquired from fields were utilized in order to decide mechanical and thermal dynamic characteristics such as friction loss windage loss and inertia. A user can decide closing or opening velocity of steam stop valves and steam regulation valves. This simulator is able to generate steam pressure, turbine speed, pump power.

  • PDF

SiRENE: A new generation of engineering simulator for real-time simulators at EDF

  • David Pialla;Stephanie Sala;Yann Morvan;Lucie Dreano;Denis Berne;Eleonore Bavoil
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.880-885
    • /
    • 2024
  • For Safety Assisted Engineering works, real-time simulators have emerged as a mandatory tool among all the key actors involved in the nuclear industry (utilities, designers and safety authorities). EDF, Electricité de France, as the leading worldwide nuclear power plant operator, has a crucial need for efficient and updated simulation tools for training, operating and safety analysis support. This paper will present the work performed at EDF/DT to develop a new generation of engineering simulator to fulfil these tasks. The project is called SiRENE, which is the acronym of Re-hosted Engineering Simulator in French. The project has been economically challenging. Therefore, to benefit from existing tools and experience, the SiRENE project combines: - A part of the process issued from the operating fleet training full-scope simulator. - An improvement of the simulator prediction reliability with the integration of High-Fidelity models, used in Safety Analysis. These High-Fidelity models address Nuclear Steam Supply System code, with CATHARE thermal-hydraulics system code and neutronics, with COCCINELLE code. - And taking advantage of the last generation and improvements of instructor station. The intensive and challenging uses of the new SiRENE engineering simulator are also discussed. The SiRENE simulator has to address different topics such as verification and validation of operating procedures, identification of safety paths, tests of I&C developments or modifications, tests on hydraulics system components (pump, valve etc.), support studies for Probabilistic Safety Analysis (PSA). etc. It also emerges that SiRENE simulator is a valuable tool for self-training of the newcomers in EDF nuclear engineering centers. As a modifiable tool and thanks to a skillful team managing the SiRENE project, specific and adapted modifications can be taken into account very quickly, in order to provide the best answers for our users' specific issues. Finally, the SiRENE simulator, and the associated configurations, has been distributed among the different engineering centers at EDF (DT in Lyon, DIPDE in Marseille and CNEPE in Tours). This distribution highlights a strong synergy and complementarity of the different engineering institutes at EDF, working together for a safer and a more profitable operating fleet.

Development of Thermal Power Boiler System Simulator Using Neural Network Algorithm (신경망 알고리즘을 이용한 화력발전 보일러 시스템 시뮬레이터 개발)

  • Lee, Jung Hoon
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.3
    • /
    • pp.9-18
    • /
    • 2020
  • The development of a large-scale thermal power plant control simulator consists of water/steam systems, air/combustion systems, pulverizer systems and turbine/generator systems. Modeling is possible for all systems except mechanical turbines/generators. Currently, there have been attempts to develop neural network simulators for some systems of a boiler, but the development of simulator for the whole system has never been completed. In particular, autoTuning, one of the key technology developments of all power generation companies, is a technology that can be achieved only when modeling for all systems with high accuracy is completed. The simulation results show accuracy of 95 to 99% or more of the actual boiler system, so if the field PID controller is fitted to this simulator, it will be available for fault diagnosis or auto-tuning.

현대상선(해영상선)의 LNG Training 현황

  • Lee, Taek-Gyu;Jeong, Dong-Cheol
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.313-315
    • /
    • 2007
  • 해영상선의 LNG Training과정을 소개하고 과정별 주요내용 및 교육장비를 소개함

  • PDF

Real-time process simulation system for training plant operators

  • Koyama, Kazuo;Tsukamoto, Takashi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.915-920
    • /
    • 1988
  • To improve the safety and productivity of continuous processes, it is becoming increasingly necessary to have simulators to train operators. This paper describes a real-time simulator developed for this purpose by Yokogawa in cooperation with the Tokyo Gas Company. This simulator - based on the YEWCOM computer - not only trains operators, but also evaluates their proficiency.

  • PDF

Development of an Operator Aid System For The Nuclear Plant Severe Accident Training and Management

  • Kim Ko Ryu;Park Sun Hee;Kim Dong Ha
    • International Journal of Safety
    • /
    • v.3 no.1
    • /
    • pp.32-37
    • /
    • 2004
  • Recently KAERI has developed the severe accident management guidance to establish Korea standard severe accident management system. On the other hand the PC-based severe accident training simulator SATS has been developed, and the MELCOR code is used as the simulation engine. SATS graphically displays and simulates the severe accidents with interactive user commands. The control capability of SATS could make a severe accident training course more interesting and effective. In this paper the development and functions of the electrical hypertext guidance module HyperKAMG and the SATS-HyperKAMG linkage system for the severe accident management are described.

Effect of Dynamic Flow on the Structure of Inhibition Layer in Hot-dip Galvanizing

  • Jin, Young Sool;Kim, Myung Soo;Kim, Su Young;Paik, Doo Jin
    • Corrosion Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.30-36
    • /
    • 2011
  • The effect of dynamic flow or forced convection were investigated and compared on the formation of inhibition layer, galvanizing and galvannealing reactions through the hot-dip galvanizing simulator with the oscillation of specimen in zinc bath, continuous galvanizing pilot plant with zinc pumping system through the snout and continuous galvanizing operation with Dynamic $Galvanizing^{TR}$ system. The interfacial Al pick-up was not consistent between the results of simulator, pilot plant and line operation, but the morphology of inhibition layer became compact and refined by the forced convection. The growth of Fe-Zn intermetallics at the interface was inhibited by the forced convection, whereas the galvannealing rate would be a little promoted.