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1. Introduction

The ballistic range is a fluid dynamic device that can
accelerate a projectile to high supersonic or hypersonic
speeds through a shock compression. Recently much
interest has been concentrated on creating an extremely
high-pressure state over several tens to hundreds thousand
atmosphere and thereby achieving very high enthalpy flows
using ballistic range [1, 2].

In general, the ballistic range consists of three tubes, two
diaphragms, a piston and a projectile as schematically
shown in Fig. 1. A high-pressurized tube serves as the
reservoir of high-pressure gas. Usually this high-pressure is
created by firing an explosive in the high-pressure tube. A
pump tube which contains a light gas is connected to the
high-pressure tube through a diaphragm separating both at
the junction. A massive piston is placed very near to the
diaphragm in the pump tube. Projectile is placed in the
launch tube which is connected to the pump tube through
another diaphragm. Rupture of the diaphragm between the
high-pressure tube and pump tube causes the piston to
move at a high-speed and isentropically compress the
light-gas to a much higher pressure than that in the
high-pressure tube, and the second diaphragm is ruptured
initiating a high-speed flow with the production of a strong
unsteady shock wave in the launch tube. Resulting
high-pressure state behind the projectile produced by the
reflection of the shock wave on the projectile base, drives
the projectile with a very high-velocity.

Until now, a large number of pioneering works [3-4] have
been carried out to optimize the performance of the ballistic
range simulators and to effectively design the device. It has
been known [3, 4] that the best performance of the ballistic
range would be obtained when the projectile base pressure
could be kept constant.
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Fig. 1 Schematic of Ballistic Range

A lot of other theoretical and experimental works {5-8]
were devoted to the performance improvement of various
types of ballistic ranges. Bogdanoff & Miller [5]
investigated the eftect of adding a diaphragm in the pump
tube on the performance of ballistic range. According to
their results, the performance of the ballistic range is
improved with the addition of the diaphragm due to the
reduction of maximum pressure in the device. Since the
addition of a shock tube can give some advantage over the
conventional ballistic range, as it can control the shock
strength, and/or mount the projectile in the launch tube, the
various processes involved need to be analyzed carefully to
optimize the performance of the device.

The objective of the present study is to analyze the
performance of ballistic range employed to investigate
aerodynamics and aeroballistics in the hyper-velocity
regime. The effect of adding shock tube in between the
pump tube and the launch tube has also been analyzed. The
present analysis helps to identify the range of operating
parameters in which the device shows a significant
performance enhancement with and without the shock tube.

2. Analytical Study

2.1 Methodology

The schematic diagram of a typical ballistic range is
shown in Fig. 1. The motion of the piston in the pump tube
is implicitly decided by the difference of pressures on both
sides of it. It is assumed that the high-pressure tube can
supply high-pressure gas at constant rate. While modeling
the motion of the piston, driver gas inertia is neglected with
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dissipation effects caused by the flow and friction between
the piston and the pump tube wall.

The projectile is driven by the unsteady shock wave in
the launch tube. The pressure acting on the base of the
projectile can be found using the unsteady gas dynamic
equations, with the assumption that no reflected rarefaction
wave from the piston overtakes the projectile.

2.2 Piston Motion

The piston is assumed to be accelerating from an initial
state where the pressure is equal to that in the high-pressure
tube and the velocity is zero.

Using method of characteristics, the pressure acting on
the rear side of the piston at any time is given as,
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On the front side of piston, the driver gas is being
compressed isentropically. Using isentropic relations,
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Equation of motion of the piston reduces to
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Eq. (5) is solved using Runge-Kutta method.

2.2 Projectile Motion

Equation of motion of projectile is modeled with the use
of unsteady shock wave generated due to diaphragm
rupture, and is given by
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where, p, is the shock compression pressure on the base of

the projectile. For a tube with cross-sectional area change,

the pressure due to diaphragm rupture is given by [6],
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where, g is the equivalence factor based on area reduction
and is given by,
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Fig. 2 Schematic of ballistic range with shock Tube
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Assuming choked flow immediately after the diaphragm
rupture, Me can be found out form Mach number-Area ratio
relation.

With the use of dimensionless parameters,
2
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Eq. (7) with the initial conditions becomes
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where, p,, and a, are the pressure and the speed of sound
at diaphragm rupture, respectively, and DPR is the
diaphragm pressure ratio, defined as p,/pj.

2.2 Addition of Shock tube

The schematic of ballistic range with a shock tube is
shown in Fig. 2. Projectile is accelerated in launch tube due
to the double compression of gases using piston motion and
unsteady shock wave.

Pressure ratio across the normal shock wave traveling
into the shock tube can be written as,
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where, I1,;= py/p, is the pressure ratio across the shock
wave, and p,y/p,; is the pressure ratio across the pump tube
diaphragm. X is the ratio of specific heats of pump tube and
shock tube gases at constant volume. From the normal
shock relations, the pressure ratio across the reflected shock
wave is obtained as,
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3. Computational Study

The computational study is performed by a commercial
software CFD-FASTRAN. It is a density based finite
volume computational fluid dynamics code which solves
the two-dimensional Euler equations. The Solver uses point
Jacobi implicit scheme with backward Euler descretization
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of the domain. The spatial differencing scheme is Rhoe’s
approximated Riemann solver. The flow is considered
unsteady and inviscid.

For simulating the motion of the projectile and piston,
chimera mesh technology is used. Overset meshes are
constructed along the 4 sides of the projectile, as shown in
Fig. 3, to interpolate the data from the other zones on which
the meshes are overlapped, while the former is in motion.
Projectile is identified as the moving body and is modeled
with 6 degree of freedom motion requiring inputs as
projectile mass, 3 moments of inertia and Y, Z co-ordinate
constraints.

4. Performance Optimization

Only a few works have been made to assess the
efficiency of a ballistic range to date. According to these
results, the ballistic efficiency is defined as the ratio of the
rate of change of kinetic energy of the projectile to the rate
of expenditure of gas energy [8]. From a practical design
point of view of the ballistic range, the endurance limit of
the projectile at very high pressures can be of major
concern. In this context, the piezometric ratio is defined as
the ratio of the peak pressure to the average pressure at the

base of the projectile during its flight [8].
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In the present study, it is assumed that the gas pressure in
the high-pressure tube is kept constant during the complete
operation of the ballistic range and when the energy of the
high-pressure gas is being transferred to the projectile, there
may be losses in both high-pressure tube and pump tube.
These losses can be excluded if the compression work done
by the piston and the energy of the pump tube gas at the
time of diaphragm rupture are considered to assess the
performance of the ballistic range.

The time at which the projectile reaches constant
velocity is considered to obtain average kinetic energy of
the projectile. The ballistic efficiencies based on the
isentropic work done by the piston and gas energy at the
time of rupture can thus be expressed as
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For the same time period for which the projectile velocity
becomes constant, the piezometric ratio can be written as,
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5. Results and discussion

5.1 Validation of the present analysis

In Fig. 4, the present analytical and computational
results are validated with the experimental ones [7]. The
theoretical and computational projectile velocities are over-
predicted due to the assumption of non-isentropic
conditions. The difference between computational and
analytical results is due to the poor simulation resulted from
the chimera mesh and boundary conditions. However the
general agreement is good. In Fig. 5, the predicted
projectile path is compared with experimental results [7} for
various diaphragm rupture pressures. At fow diaphragm
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Fig. 6 Operating processes of ballistic range with shock tube
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Fig.7 Variation of ballistic efficiencies

rupture pressures, the agreement between the analysis and
experiment is excellent. However, as the diaphragm rupture
pressure increases, the agreement becomes poor due to the
non-isentropic conditions arising at higher diaphragm
rupture pressures, and the wave and friction drags at higher
velocities.

Fig. 6 shows the typical operating processes of ballistic
range with shock tube. Figs.7 and 8 shows the variation of
ballistic efficiencies n, and Mg » Tpiezo and projectile

velocity with respect to the pump tube diaphragm rupture
pressure, p. It is known that for both the ballistic ranges
with and without shock tube, Mys Mg> Mpiezo and projectile
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Fig. 8 Variation of piezometric ratio and velocity

velocity increase with p,. At large values of rupture
pressure, the ballistic range with shock tube shows
significant performance improvement. However, the
ballistic range without shock tube performs slightly better
than the other at very low rupture pressures. This identifies
the ranges under which both the ballistic ranges can be
operated at its maximum performance.

The analysis reveals that significant performance
enhancement could be obtained with the addition of a shock
tube. However, the present analysis being unable to model
various dissipation effects, the calculated performance
enhancement with the addition of shock tube in the ballistic
range may be over-estimated.

6. Conclusions

Both theoretical and computational analyses have been
carried out to identify the range of parameters under which
the ballistic range performance becomes maximum.
Ballistic efficiencies defined here, clearly dictate how
efficient the energy transfer is from the pump tube to the
projectile. Lower piezometric ratios correspond to even
distribution of the shock pressure on the projectile during
its flight.

A considerable improvement of ballistic range
performance was obtained with the addition of a shock tube.
The analysis reveals that the shock tube added to ballistic
range improves the performance of the device at higher
diaphragm rupture pressures. Best operating conditions of
the device could thus be identified from the present
investigation. Further analysis needs to be carried out for
simulating the viscous conditions in the ballistic range.
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