• Title/Summary/Keyword: plant peptide hormone

Search Result 6, Processing Time 0.021 seconds

H-1, C-13, and N-15 resonance assignments of ENOD40B, a plant peptide hormone

  • Young Kee Chae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.27 no.2
    • /
    • pp.5-9
    • /
    • 2023
  • t ENOD40B, a plant peptide hormone, was doubly labeled with C-13 and N-15 by recombinant production in Escherichia coli. The peptide was prepared by affinity chromatography followed by protease cleavage and reverse-phase chromatography. To elucidate the mode of action against its receptor, sucrose synthase, we proceeded to assign the backbone and side-chain resonances using a set of double and triple resonance experiments. This result will be used to determine the three-dimensional structure of the peptide at its bound state as well as to observe the chemical shift changes upon binding.

Molecular Characterization of a Chinese cabbage cDNA, C-DH, Predominantly Induced by Water-Deficit Stress and Plant Hormone, ABA (수분부족 및 식물호르몬, ABA에 의하여 발현이 유도되는 배추의 C-DH cDNA에 대한 분자적 특성)

  • 정나은;이균오;홍창휘;정배교;박정동;이상열
    • Korean Journal Plant Pathology
    • /
    • v.14 no.3
    • /
    • pp.240-246
    • /
    • 1998
  • A cDNA encoding desiccation-related protein was isolated from a flower bud cDNA library of Chinese cabbage (C-DH) and its nucleotide sequence was characterized. It contains 679 bp nucleotides with 501 bp open reading frame. The amino acid sequence of the putative protein showed the highest amino acid sequence homology (79 % identity) to dehydrin protein in Gossypium hirsutum. Also, the C-DH shares 48-52% amino acid sequence identity with the other typical dehydrin proteins in plant cells. When the amino acid sequence of their proteins were aligned, several peptide motifs were well conserved, of which function has to be solved. Particularly the C-DH contains 15 additional amino acids at its N-terminus. Genomic Southern blot analysis using the coding region of C-DH showed that the C-DH consists of a single copy gene in Chinese cabbage genome. The C-DH mRNA, whose transcript size is 0.7 kb, was expressed with a tissue-specific manner. It was highly expressed in seed, flower buds and low expression as detected in root, stem or leaf tissues of Chinese cabbage. And the transcript level of C-DH was significantly induced by the treatment of plant hormone, abscisic acid and water-deficit conditions.

  • PDF

Application of a Promoter Isolated from Chlorella Virus in Chlorella Transformation System

  • Park, Hyoun-Hyang;Park, Tae-Jin
    • The Plant Pathology Journal
    • /
    • v.20 no.2
    • /
    • pp.158-163
    • /
    • 2004
  • Chlorella is a eukaryotic microalgae which shares metabolic pathways with higher plants. These charac-teristics make chlorella a potential candidate for eukaryotic overexpression systems. Recently, a foreign flounder growth hormone gene was stably introduced and expressed in transformed Chlorella ellipsoidea by using a modified plant transformation vector that contains cauliflower mosaic virus (CaMV) 35S pro-moter and the phleomycin resistant Sh ble gene as a selection marker. In this study, this same vector was modified by incorporating a promoter and a 3' UTR region of the 33kDa peptide gene from a chlorella virus that was isolated in our laboratory. The 33kDa gene promoter was used to replace the 35S promoter and the 3' UTR was introduced to separate the target gene and downstream Sh ble gene. Three different chlorella transformation vectors containing human erythropoietin (EPO) gene were constructed. The mp335EPO vector consists of a promoter from the 33kDa peptide gene, whereas the mp3353EPO vector contains the same promoter from the 33kDa peptide gene and its 3' UTR. The mp35S33pEPO vector contains the 35S promoter and the 3' UTR from the 33 kDa peptide gene. There was no significant difference in the expression levels of EPO protein in chlorella cells transformed with either of three of the transformation vectors. These data indicate that the promoters from the chlorella virus are comparable to the most common CaMV 35S promoter. Furthermore, these data suggest that other promoters from this virus can be used in future construction of chlorella transformation system for higher expression of target proteins.

Characterization of Gibberellic Acid-Stimulated Arabidopsis (GASA) gene to drought stress response in Poplar (Populus alba × P. glandulosa) (현사시나무 Gibberellic Acid-Stimulated Arabidopsis (GASA) 유전자의 발현 특성 및 건조 스트레스 내성 구명)

  • Choi, Hyunmo;Bae, Eun-Kyung;Choi, Young-Im;Yoon, Seo-Kyung;Lee, Hyoshin
    • Journal of Plant Biotechnology
    • /
    • v.44 no.1
    • /
    • pp.61-68
    • /
    • 2017
  • Gibberellic Acid-Stimulated Arabidopsis (GASA) genes are involved in plant hormone signaling, cell division and elongation, as well as in responses to stress conditions in plants. In this study, we isolated a GASA gene from hybrid poplar (Populus alba ${\times}$ P. glandulosa) and analyzed its physiological phenotype and molecular functions in poplar. PagGASA cDNA encodes a putative protein composed of 95 amino acids containing an N-terminal signal peptide and a conservative cysteine-rich C-terminal domain. Southern blot analysis revealed that one or two copies of the PagGASA are present in the poplar genome. The PagGASA transcripts were highly detected in flowers and roots. Moreover, the expression of PagGASA was induced by growth hormone (gibberellic acid) and stress hormones (abscisic acid, jasmonic acid, and salicylic acid). By using transgenic analysis, we showed that the upregulation of PagGASA in poplar provides high tolerance to drought stress. Therefore, our results suggest that PagGASA plays an important role in drought stress tolerance via stress-related plant hormone signaling in poplar.

Prolyl Endopeptidase Inhibitory Activity of 6-O-Palmitoyl L-Ascorbic Acid

  • Park, Yoon-Seok;Paik, Young-Sook
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.110-113
    • /
    • 2006
  • Prolyl endopeptidase (PEP, EC 3.4.21.26, also referred to as prolyl oligopeptidase) degrades proline containing, biologically active neuropeptides such as vasopressin, substance P and thyrotropin-releasing hormone by cleaving peptide bonds on carboxyl side of prolyl residue within neuropeptides of less than 30 amino acids. Evaluation of PEP levels in postmortem brains of Alzheimer's disease patients revealed significant increases in PEP activity. Therefore, a specific PEP inhibitor can be a good candidate of drug against memory loss. Upon our examination for PEP inhibitory activity from micronutrients, ascorbic acid (vitamin C) showed small but significant PEP inhibition (13% PEP inhibition at $8{\mu}g{\cdot}ml^{-1}$). Palmitic acid showed almost no PEP inhibition. However, 6-O-palmitoyl ascorbic acid ($\underline{1}$) showed 70% PEP inhibition at $8{\mu}g{\cdot}ml^{-1}$ indicating that hydrophobic portion of the compound $\underline{1}$ may facilitate the inhibitory effect. $IC_{50}$ value of compound $\underline{1}$ was $12.6{\pm}0.2{\mu}M$. The primary and secondary Lineweaver Burk and Dixon plots for compound $\underline{1}$ indicated that it is a non-competitive inhibitor with inhibition constant (Ki) value of $23.7{\mu}M$.

Inhibitory Activity of Plant Extracts against Prolyl Endopeptidase (식물자원의 Prolyl Endopeptidase 저해활성 탐색)

  • Kim, Geum-Soog;Lee, Seung-Eun;Lee, Hee-Ju;Kim, Yi-Min;Jeon, So-Young;Park, Chun-Geon;Seong, Nak-Sul;Song, Kyung-Sik
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • Prolyl endopeptidase (PEP) is proline-specific serine protease, cleaving peptide bonds on the biologically active neuropeptides such as substance P, vassopressin, and thyrotropin-releasing hormone and is, therefore, suggested to play important roles in learning and memory process. In this work, the inhibitory effect of plant extracts on PEP was investigated. Out of 200 plant extracts, Prunus mume, Pyrola. japonica, Hypericum ascyron, Astilbe chinensis var. typica, and Elaeagnus umbellata inhibited more than 90% of PEP activity at the concentration of 5 ppm.