• Title/Summary/Keyword: plant pathogenic

Search Result 814, Processing Time 0.022 seconds

The Roles of Protein Degradation During Fungal-plant Interactions (단백질 분해가 식물의 진균 병 진전에 미치는 영향)

  • Ahn, Il-Pyung;Park, Sang-Ryeol;Bae, Shin-Chul
    • The Korean Journal of Mycology
    • /
    • v.38 no.2
    • /
    • pp.89-94
    • /
    • 2010
  • Plant pathogenic fungi are the most diverse and drastic causal agents of crop diseases threatening stable food production all over the world. Plant have evolved efficient innate immune system to scout and counterattack fungal invasion and pathogenic fungi also developed virulence system to nullify plant resistance machinery or signaling pathways and to propagate and dominate within their niche. A growing body of evidences suggests that post translational modifications (PTMs) and selective/nonselective degradations of proteins involved in virulence expression of plant pathogenic fungi and plant defense machinery should play pivotal roles during the compatible and incompatible interactions. This review elucidates recent investigations about the effects of PTMs and protein degradations on host defense and fungal pathogens' invasions.

Screening and Application of Bacillus Strains Isolated from Nonrhizospheric Rice Soil for the Biocontrol of Rice Blast

  • Sha, Yuexia;Zeng, Qingchao;Sui, Shuting
    • The Plant Pathology Journal
    • /
    • v.36 no.3
    • /
    • pp.231-243
    • /
    • 2020
  • Rice blast, caused by Magnaporthe oryzae, is one of the most destructive rice diseases worldwide. The aim of this study was to screen bacterial isolates to efficiently prevent the occurrence of rice blast. A total of 232 bacterial isolates were extracted from nonrhizospheric rice soil and were screened for antifungal activity against M. oryzae using a leaf segment assay. Strains S170 and S9 showed significant antagonistic activity against M. oryzae in vitro and in leaf disk assays, and controlled M. oryzae infection under greenhouse conditions. The results showed that strains S170 and S9 could effectively control rice leaf blast and panicle neck blast after five spray treatments in field. This suggested that the bacterial strains S170 and S9 were valuable and promising for the biocontrol of rice disease caused by M. oryzae. Based on 16S rDNA, and gyrA and gyrB gene sequence analyses, S170 and S9 were identified as Bacillus amyloliquefaciens and B. pumilus, respectively. The research also demonstrated that B. amyloliquefaciens S170 and B. pumilus S9 could colonize rice plants to prevent pathogenic infection and evidently suppressed plant disease caused by 11 other plant pathogenic fungi. This is the first study to demonstrate that B. amyloliquefaciens and B. pumilus isolated from nonrhizospheric rice soil are capable of recolonizing internal rice stem tissues.

Biological Weed Control with Plant Pathogenic Microorganisms.

  • Hong, Yeon-Kyu
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.15-18
    • /
    • 2003
  • Contemporary biological control system includes the use of fungi to control weeds in agricultural ecosystems and forests. Fungal pathogens of weeds that are highly virulent and specific to target weeds, and able to be produced massively by artificial culture could be applied like chemical herbicides over the weeds.(중략)

  • PDF

Control Efficacy of Phloretin Isolated from Apple Fruits Against Several Plant Diseases

  • Shim, Sang-Hee;Jo, Su-Jung;Kim, Jin-Cheol;Choi, Gyung-Ja
    • The Plant Pathology Journal
    • /
    • v.26 no.3
    • /
    • pp.280-285
    • /
    • 2010
  • In the course of a searching natural antifungal compounds from plant sources, we found that the methanol extract ($3,000\;{\mu}g/ml$) of Malus domestica fruits had potential of control against rice blast (Magnaporthe grisea) and tomato late blight (Phytophthora infestans). Under bioassay-guided purification, we isolated phloretin, a phenolic compound, with in vivo antifungal activity against M. grisea. By 1-day protective application of phloretin ($500\;{\mu}g/ml$), the compound strongly inhibited the disease development of M. grisea and P. infestans on rice and tomato seedlings, respectively. And red pepper anthracnose caused by Colletotrichum coccodes also was moderately suppressed. However, rice sheath blight (Rhizoctonia solani AG1), and barley powdery mildew (Blumeria graminis f. sp. hordei) were hardly controlled. In addition, the compound showed in vitro antifungal activity against some plant pathogenic fungi including Phytophthora capsici, Alternaria panax, Sclerotinia sclerotiorum, R. solani AG4, and M. grisea. This is the first report on the antifungal activity of phloretin against plant pathogenic fungi.

Characterization of Sclerotinia sclerotiorum, an Emerging Fungal Pathogen Causing Blight in Hyacinth Bean (Lablab purpureus)

  • Prova, Ananya;Akanda, Abdul Mannan;Islam, Shaikhul;Hossain, Md. Motaher
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.367-380
    • /
    • 2018
  • Stems and pods of hyacinth bean cultivated in a farmer's field in Gazipur District, Bangladesh, were found rotted in nearly 5% hyacinth bean plants. A fungus having fluffy mycelium and large sclerotia was isolated from affected tissues. Combined results of morphological, molecular and pathological analyses identified the fungus as Sclerotinia sclerotiorum (Lib) de Bary. Inoculating the fungus on healthy hyacinth bean plants and pods reproduced the symptoms previously observed in the field. The three isolates obtained from naturally infected plants were cross inoculated in hyacinth bean, okra and African-American marigold and they were pathogenic to these hosts. The optimum temperature and pH for its growth were $20^{\circ}C$ and pH 5.0, respectively. Sclerotial development was favored at pH 5.0. Sucrose and mannitol were the best carbon sources to support hyphal growth, while glucose was the most favourable for sclerotial development. The hyacinth bean genotypes, HB-82 (Rupban Sheem) and HB-102 were found highly resistant, while HB-94 (Ashina) was moderate resistant to the fungus. Finally, S. sclerotiorum was sensitive to Bavistin, Dithane M-45 and Rovral fungicides and Ca in the form of $CaCl_2$. This observation could possibly aid in eliminating field loss in hyacinth bean caused by an emerging pathogenic fungus S. sclerotiorum.

Isolation and Antifungal and Antioomycete Activity of Streptomyces scabiei Strain PK-A41, the Causal Agent of Common Scab Disease

  • Han, Won-Choon;Lee, Jung-Yeop;Park, Duck-Hwan;Lim, Chun-Keun;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • v.20 no.2
    • /
    • pp.115-126
    • /
    • 2004
  • The actinomycete strain PK-A41 was isolated from a soil sample from pepper fields in Ko-yang, Korea. The strain PK-A41 inhibited the mycelial growth of some plant pathogenic fungi and oomycete, Alternaria mali, Colletotrichum orbiculare, Fusarium oxysporum f.sp. lycopersici, Magnaporthe grisea, Rhizoctonia solani, and Phytophthora capsici. The presence of LL-diaminopi-melic acid in the cell wall extract and the nucleotide sequence of the 16S rDNA region of the strain PK-A41 was assigned to Streptomyces scabiei. Further morpho-logical, biochemical, and pathological analyses also confirmed the strain PK-A41 to be S. scabiei, which is pathogenic to potato tubers. The maximum antibiotic production of the strain PK-A41 was achieved when grown on the glycerol peptone broth (GPB) medium for 9 days.

Antifungal Activity of Securinine against Some Plant Pathogenic Fungi

  • Singh, Ashok K.;Pandey, M.B.;Singh, Sarita;Singh, Anil K.;Singh, U.P.
    • Mycobiology
    • /
    • v.36 no.2
    • /
    • pp.99-101
    • /
    • 2008
  • The alkaloid securinine was assessed against spore germination of some plant pathogenic and saprophytic fungi (Alternaria alternata, Alternaria brassicae, Alternaria brassicicola, Curvularia lunata, Curvularia maculans, Curvularia pallenscens, Colletotrichum musae, Colletotrichum sp., Erysiphe pisi, Helminthosporium echinoclova, Helminthosporium spiciferum, Heterosporium sp.). Spore germinations of all the tested fungi were inhibited. Alternaria brassicicola, C. lunata, C. pallenscens and H. spiciferum were highly sensitive as complete inhibition of spore germination was observed at very low concentrations (200 ppm).

Antifungal Activities of Insect Against the Plant Pathogenic Fungi (곤충의 식물병원성 진균에 대한 항균활성)

  • Kim, Kyung-A;Lee, Kyung-Yeol;Song, Kyung-Sik;Nho, Si-Kab
    • Journal of Sericultural and Entomological Science
    • /
    • v.48 no.2
    • /
    • pp.68-72
    • /
    • 2006
  • The hemolmyph and whole body of insect, Bombyx mori, Allomyrina dichotoma and Neotocia brevitarsi, conspicuously inhibited the mycelial growth of several plant pathogenic fungi. The hemolymph of 1087 strain among the 16 strains of B. mori has inhibition activities against the 3 species of fungi, Alternaria panax, Collctotrichum gloeosporioides, and Pyricularia oryzae. The whole body of B. mori was more effective than the hemolymph as a inhibitor on fungi growth. The antifungal activity of B. mori was variable to the fungi species. In addition, A. dichotoma and N. brevitarsi showed antifungal activities against the same fungi as did B. mori. These data showed that the insect has potent antifungal activity. Whereas, the level of activities were differ according to the fungal species. This finding underlines that the possibility of the insect can be use of the agent as a inhibitor against the plant pathogenic fungi.