• Title/Summary/Keyword: plant parameters

Search Result 1,814, Processing Time 0.05 seconds

Evaluation of raw wastewater characteristic and effluent quality in Kashan Wastewater Treatment Plant

  • Dehghani, Rouhullah;Miranzadeh, Mohammad Bagher;Tehrani, Ashraf Mazaheri;Akbari, Hossein;Iranshahi, Leila;Zeraatkar, Abbas
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.273-278
    • /
    • 2018
  • Due to the lack of water in arid and semi-arid areas, reuse of wastewater can be a suitable way to compensate for water scarcity. Therefore, in this research, evaluation of the quality of wastewater of Kashan Treatment Plant to use for irrigation was studied. This descriptive cross-sectional study was conducted in 2016. pH, TSS, TDS, turbidity, COD, BOD5, Total Kjeldahl Nitrogen, Total Phosphorus, Total Coliform, fecal coliform, nematode eggs of inlet and outlet of wastewater treatment plant in Kashan were studied. Mean and standard deviation and wastewater quality parameters before and after treatment were tested with SPSS 22 (2014) software. The mean wastewater output of COD, BOD5, TSS, TDS and turbidity were respectively 86.6, 41.2, 11.11, 1095 mgL-1 and 17.5 NTU and the pH was equal to 7.22. Also, the average of Total Kjeldahl Nitrogen and phosphorus were 22.4 and 2.2 mgL-1 respectively. The mean of Total Coliform and fecal coliform were 225, 161 MPN / 100 ml respectively. In addition, no nematode eggs were found in final effluent. The results indicated that the treatment plants had a significant role in the control of microbial and organic pollution load of wastewater. Also, it is concluded that all parameters were in accordance with the standards of Iran's Department of Environment, so, it can be used for unrestricted irrigation.

Selection of plant oil as a supplemental energy source by monitoring rumen profiles and its dietary application in Thai crossbred beef cattle

  • Matsuba, Keiji;Padlom, Apirada;Khongpradit, Anchalee;Boonsaen, Phoompong;Thirawong, Prayad;Sawanon, Suriya;Suzuki, Yutaka;Koike, Satoshi;Kobayashi, Yasuo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.10
    • /
    • pp.1511-1520
    • /
    • 2019
  • Objective: The present study was conducted to select a plant oil without inhibitory effects on rumen fermentation and microbes, and to determine the optimal supplementation level of the selected oil in a series of in vitro studies for dietary application. Then, the selected oil was evaluated in a feeding study using Thai crossbred beef cattle by monitoring growth, carcass, blood and rumen characteristics. Methods: Rumen fluid was incubated with substrates containing one of three different types of plant oil (coconut oil, palm oil, and soybean oil) widely available in Thailand. The effects of each oil on rumen fermentation and microbes were monitored and the oil without a negative influence on rumen parameters was selected. Then, the dose-response of rumen parameters to various levels of the selected palm oil was monitored to determine a suitable supplementation level. Finally, an 8-month feeding experiment with the diet supplemented with palm oil was carried out using 12 Thai crossbred beef cattle to monitor growth, carcass, rumen and blood profiles. Results: Batch culture studies revealed that coconut and soybean oils inhibited the most potent rumen cellulolytic bacterium Fibrobacter succinogenes, while palm oil had no such negative effect on this and on rumen fermentation products at 5% or higher supplementation level. Cattle fed the diet supplemented with 2.5% palm oil showed improved feed conversion ratio (FCR) without any adverse effects on rumen fermentation. Palm oil-supplemented diet increased blood cholesterol levels, suggesting a higher energy status of the experimental cattle. Conclusion: Palm oil had no negative effects on rumen fermentation and microbes when supplemented at levels up to 5% in vitro. Thai crossbred cattle fed the palm oil-supplemented diet showed improved FCR without apparent changes of rumen and carcass characteristics, but with elevated blood cholesterol levels. Therefore, palm oil can be used as a beneficial energy source.

Effect of immune-enhancing enteral nutrition formula enriched with plant-derived n-3 fatty acids on natural killer cell activity in rehabilitation patients

  • Cho, Jung Min;Choi, Hyo Seon;Cho, Youn Soo;Park, So Young;Kim, Deog Young;Lee, Jong Ho
    • Nutrition Research and Practice
    • /
    • v.13 no.5
    • /
    • pp.384-392
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Enteral nutrition formulas with immune-enhancing nutrients, such as n-3 fatty acids, may manage patients' nutritional status and pathophysiological processes. The aim of our study was to investigate natural killer (NK) cell activity alterations and related cytokine changes resulting from feeding with soybean oil-containing enteral nutrition formula (control group) and plant-derived n-3 fatty acid-enriched enteral nutrition formula. SUBJECTS/METHODS: Subjects participated for 14 consecutive days and consumed enteral formula containing canola and flaxseed oil (n3EN, test group) in nonsurgical patients hospitalized for rehabilitation. Blood samples were collected on the first day and 14 days after the consumption of each formula daily, and anthropometric parameters were collected. Hematology and biochemical values were analyzed, and NK cell activities and serum cytokine concentration were measured. A total of sixty subjects were included in the analysis, excluding dropouts. RESULTS: No significant differences were found in biochemical parameters. The n3EN group's NK cell activities at effector:tumor cell ratios of 10:1, 5:1, 2.5:1 and 0.625:1 were significantly higher than those of the control group after two weeks (P < 0.05). However, there were no statistically significant differences in serum cytokine interleukin (IL)-12, $interferon-{\gamma}$, $IL-1{\beta}$, IL-6 and tumor necrosis $factor-{\alpha}$ values between the two groups. CONCLUSIONS: In conclusion, this study elucidates the beneficial effects of plant-derived n-3 fatty acid supplementation in enteral formula on NK cell activity.

Fish Meal Replacement with a Mixture of Plant and Animal Protein Sources in Extruded Pellet (EP) Diet for Red Seabream Pagrus major at Low Water Temperature (저수온기 참돔(Pagrus major) EP사료 내 동·식물성단백질 혼합물의 어분 대체)

  • Lim, Jongho;Kim, Min-Gi;Lim, Hyunwoon;Lee, Bong-Joo;Lee, Seunghyung;Hur, Sang-Woo;Kim, Kang-Woong;Lee, Kyeong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.3
    • /
    • pp.350-357
    • /
    • 2021
  • This study aimed to evaluate how fish meal (FM) replacement in diets with a mixture of animal and plant protein sources affect growth performance, feed utilization, hematological parameters and innate immunity of red seabream Pagrus major. A control FM diet was formulated to contain 65% FM (Con). Two other diets were prepared replacing FM in the control diet with a mixture of protein sources (wheat gluten, soy-protein concentrate, tankage meal, and poultry by-product meal) by 30 and 40% (FM30 and FM40, respectively). Total 300 red seabream (body weight, 77.6±0.3g) were distributed to 12 tanks (300 L) in 4 replicates per diet. The fish were fed the diets to apparent satiation for 19 weeks. After the feeding trial, no significant differences could be observed in growth performance, feed utilization, hematological parameters, innate immunity, and survivals among all the dietary treatments. This long-term feeding trial at low water temperature (13.8-17.5℃) indicates that a proper mixture ratio of wheat gluten, soy protein concentrate, tankage meal, and poultry by-product meal can replace FM up to 40% in red seabream diets.

Unit Mass Estimation and Analysis from Textile Spinning/Weaving Manufacturing Facility Nearby Nakdong River Basin (낙동강 수계에서 제사방적제조 업체에 대한 공정별 원단위산정 및 분석)

  • Lee, Hongshin;Son, Gontae;Gu, Jungeun;Konboonraksa T.;Lee, Hongtae;Lee, Seunghwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.5
    • /
    • pp.541-550
    • /
    • 2008
  • In this investigative study, the unit mass discharge for the major water quality parameters such as flowrate, SS, BOD, CODmn, CODcr, TN, TP from textile spinning/weaving industry nearby Nakdong river basin was estimated. To represent the respective industries, three companies from hundreds of textile spinning/weaving industries located in Nakdong river basin was carefully selected based on its manufacturing goods, flowrate and location for the estimation of unit mass discharge based on unit operation and process. There was a drastic decrease of unit mass discharge estimation between influents and effluents of water quality parameters, which represents the removal capacity of wastewater treatment plant. With the advent of new regulation on the imposed payment proportional to the total amount of pollutants discharge into the water body, the concept of cleaner production technology should be employed in the unit operation/process in wastewater treatment plant as well as textile manufacturing procedure to minimize the levy on the pollutants discharge. Unit mass discharge estimations of unit process (estimated in this study) in major water quality parameters (SS, BOD, COD, TN and TP) based on land were similar to those of composite process (estimated by National Institute of Environmental Research). But the unit mass discharge estimations of unit process in BOD and CODmn based on total sale were much higher than those of composite one while in SS, TN and TP similar to each other. For the detailed estimation of the imposed payment, unit mass estimation based on unit process should be further emphasized.

Clitoria ternatea L. as a Potential High Quality Forage Legume

  • Abreu, Matheus Lima Correa;Vieira, Ricardo Augusto Mendonca;Rocha, Norberto Silva;Araujo, Raphael Pavesi;Gloria, Leonardo Siqueira;Fernandes, Alberto Magno;Lacerda, Paulo Drude De;Junior, Antonio Gesualdi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.2
    • /
    • pp.169-178
    • /
    • 2014
  • Samples of Clitoria ternatea L. (Cunh$\tilde{a}$) were harvested at 35, 50, 70, and 90 d after a uniformity harvest in a field study designed as a completely randomized design with a total of 18 experimental plots. The dry matter yield of the whole plant was separated quantitatively into leaves, stems, and pods at each harvesting age. Chemical analyses and in vitro gas production kinetics were performed to assess the quality of the plant parts. Yields, chemical composition, and estimates of gas production parameters were analyzed by fitting a mixed statistical model with two types of covariance structures as follows: variance components and an unrestricted structure with heterogeneous variances. Fast and slow gas yielding pools were detected for both leaves and stems, but only a single pool was detected for pods. The homoscedasticity assumption was more likely for all variables, except for some parameters of the gas production kinetics of leaves and stems. There was no presence of typical pods at 35 and 50 d. In the leaves, the fibrous fractions were affected, whereas the non-fibrous fractions were unaffected by the harvesting age. The harvesting age affected the majority of the chemical constituents and gas kinetic parameters related to the stems. The leaves of this legume were the least affected part by the aging process.

Use of Chlorophyll a Fluorescence Imaging for Photochemical Stress Assessment in Maize (Zea mays L.) Leaf under Hot Air Condition

  • Park, Jong Yong;Yoo, Sung Young;Kang, Hong Gyu;Kim, Tae Wan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.4
    • /
    • pp.270-276
    • /
    • 2016
  • The objective of this study was to find a rapid determination of the hot air stress in maize (Zea mays L.) leaves using a portable chlorophyll fluorescence imaging instrument. To assess the photosynthetic activity of maize leaves, an imaging analysis of the photochemical responses of maize was performed with chlorophyll fluorescence camera. The observed chlorophyll imaging photos were numerically transformed to the photochemical parameters on the basis of chlorophyll a fluorescence. Chlorophyll a fluorescence imaging (CFI) method showed that a rapid decrease in maximum fluorescence intensity ($F_m$) of leaf occurred under hot air stress. Although no change was observed in the maximum quantum yield ($F_v/F_m$) of the hot air stressed maize leaves, the other photochemical parameters such as maximum fluorescence intensity ($F_m$) and Maximum fluorescence value ($F_p$) were relatively lowered after hot air stress. In hot air stressed maize leaves, an increase was observed in the nonphotoquenching (NPQ) and decrease in the effective quantum yield of photochemical energy conversion in photosystem II (${\Phi}PSII$). Thus, NPQ and ${\Phi}PSII$ were available to be determined non-destructively in maize leaves under hot air stress. Our results clearly indicated that the hot air could be a source of stress in maize leaves. Thus, the CFI analysis along with its related parameters can be used as a rapid indicating technique for the determining hot air stress in plants.

Investigation of the refined safety factor for berthing energy calculation

  • Kim, Sang Woo;Lee, Seung Jae;Kim, Young Tae;Kim, Do Kyun
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.785-797
    • /
    • 2020
  • As the growth of world trade has surged rapidly over the past years, the number is expected to continue growing over the coming years. Although the transportation costs can be reduced by using larger vessels, however, new berthing structures have to be constructed in order to cater for the larger vessels. This leads to a need for researching on designing a better berthing structure. For optimization of berthing structure design, we need to provide a better estimation of berthing energy than the previous methods in the existing guidelines. In this study, several berthing parameters were collected from previous works and researches. Moreover, the scenarios were selected efficiently by using a sampling technique. First, the berthing energy was calculated by executing 150 numerical simulations. Then, the numerical simulation results were compared with the results calculated by existing methods quantitatively to investigate the sensitivity of the berthing parameters and the accuracy of existing methods. The numerical method results have shown some deviation with respect to the existing method results in which the degree of deviation varies with the methods and the tendency of differences is dependent on certain berthing parameters. Then, one of the existing methods which has shown a small deviation was selected as a representative method and applied with several safety factors to obtain a suitable safety factor for the design.

Effects of Elevated $CO_2$ and Global Warming on Growth Parameters, Biomass Production and Its Partitioning of Rice ($CO_2$ 농도의 상승과 온난화환경이 수도의 생장, 물질생산 및 그 분배에 미치는 영향)

  • 김한용
    • Korean Journal of Plant Resources
    • /
    • v.11 no.1
    • /
    • pp.80-85
    • /
    • 1998
  • The influence of elevated CO2 and temperature on growth parameters, biomass production and its partitioning of rice (Oryza sativa L.cv. Chukwangbyeo) were investigated in the three experiments (1991-1993). Rice plants were grown from transplanting to harvest at either ambient(350ppm) or elevated CO2 concentrations (690 or 650ppm) in combination with either four or seven temperature regimes ranging form ambient temperature (AT) to AT plus 3$^{\circ}C$.From transplanting to panicle initiation, crop growth rate (CGR) was enhanced by up to 27% with elevated CO2 , primarily due to an an increase in leaf area index. although net assimilatiion rate was also greater at elevated CO2. The effect of elevated CO2 varied with temperature. During the reproductive phase, CGR declined linearly with increased temperature, and was greater at elevated CO2 . Elevated CO2 increased final crop biomass and panicle weight 30% respectively at AT(27.6$^{\circ}C$ : 1991) . However, there was no significant effect of elevated CO2 on panicle weight at AT plus 3$^{\circ}C$, where severe spikelet sterility occurred. There was no significant effect of elevated CO2 on panicle weight at AT plus 3$^{\circ}C$, where severe spikelet sterility occurred. There was also no effect of CO2 on biomass pratitioning into vegetative and reproductive organs (harvest index)) at AT, although higher temperature could affect that by inducing spikelet sterility. These results suggest that elevated CO2 could enhance rice producivity througth promoted growth and biomass production , but its positive effects may be less at higher temperatures.

  • PDF

Application of Chlorophyll a Fluorescence Imaging Analysis for Selection of Rapid Frozen Sweet Persimmon Fruits (단감(Diospyros kaki)의 동상해 평가를 위한 엽록소 형광 이미지 분석법의 활용)

  • Yoo, Sung Young;Park, So Hyun;Lee, Min Ju;Park, Jong Yong;Kang, Hong Gyu;Kang, Sung Ku;Kim, Tae Wan
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.3
    • /
    • pp.210-216
    • /
    • 2015
  • BACKGROUND: In korea, sweet persimmon(Diospyros kaki) cultivation is front to abiotic stresses such as frost damage at fruit maturing stage. The cold and rapid freezing stresses are most damaging to fruit production which is most actively progressed in late fall. This study was performed to evaluate the validity of chlorophyll fluorescence imaging(CFI) technology to determine the degree of frost damage in sweet persimmon fruits. METHODS AND RESULTS: The sweet persimmon fruits were measured separately for each treatment(15, 30, 60 minutes) at 24 hours after treatment(HAT) rapid freezing. A CFI FluorCam (FC 1000-H, PSI, Czech Republic) was used to measure the fluorescence images of the fruits. In rapid freezing for 15 minutes, photochemical parameters were not changed. However, in rapid freezing for 30 and 60 minutes, photochemical parameters were lowered. Especially, $F_m$, $F_v$, $F_v/F_m$ and ${\Phi}PSII$ values were declined under rapid freezing. CONCLUSION: In our study, it was clearly indicated that the rapid freezing could be a stress in sweet persimmon fruits. The CFI analysis and its related parameters are applicable as a rapid assessing technique for the determination of frost damage.