Browse > Article
http://dx.doi.org/10.5338/KJEA.2015.34.3.32

Application of Chlorophyll a Fluorescence Imaging Analysis for Selection of Rapid Frozen Sweet Persimmon Fruits  

Yoo, Sung Young (Institute of Ecological Phytochemistry, Hankyong National University)
Park, So Hyun (Institute of Ecological Phytochemistry, Hankyong National University)
Lee, Min Ju (Institute of Ecological Phytochemistry, Hankyong National University)
Park, Jong Yong (Department of Plant Life and Environmental Science, Hankyong National University)
Kang, Hong Gyu (Department of Plant Life and Environmental Science, Hankyong National University)
Kang, Sung Ku (Department of Fruit Science, Korea National College of Agriculture and Fisheries)
Kim, Tae Wan (Institute of Ecological Phytochemistry, Hankyong National University)
Publication Information
Korean Journal of Environmental Agriculture / v.34, no.3, 2015 , pp. 210-216 More about this Journal
Abstract
BACKGROUND: In korea, sweet persimmon(Diospyros kaki) cultivation is front to abiotic stresses such as frost damage at fruit maturing stage. The cold and rapid freezing stresses are most damaging to fruit production which is most actively progressed in late fall. This study was performed to evaluate the validity of chlorophyll fluorescence imaging(CFI) technology to determine the degree of frost damage in sweet persimmon fruits. METHODS AND RESULTS: The sweet persimmon fruits were measured separately for each treatment(15, 30, 60 minutes) at 24 hours after treatment(HAT) rapid freezing. A CFI FluorCam (FC 1000-H, PSI, Czech Republic) was used to measure the fluorescence images of the fruits. In rapid freezing for 15 minutes, photochemical parameters were not changed. However, in rapid freezing for 30 and 60 minutes, photochemical parameters were lowered. Especially, $F_m$, $F_v$, $F_v/F_m$ and ${\Phi}PSII$ values were declined under rapid freezing. CONCLUSION: In our study, it was clearly indicated that the rapid freezing could be a stress in sweet persimmon fruits. The CFI analysis and its related parameters are applicable as a rapid assessing technique for the determination of frost damage.
Keywords
Chlorophyll Fluorescence Imaging; Frost Damage; Rapid Freezing; Sweet Persimmon;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Adams, G. T., & Perkins, T. D. (1993). Assessing cold tolerance in Picea using chlorophyll fluorescence. Environmental and Experimental Botany, 33(3), 377-382.   DOI
2 Baker, N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113.   DOI
3 Barbagallo, R. P., Oxborough, K., Pallett, K. E., & Baker, N. R. (2003). Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiology, 132(2), 485-493.   DOI
4 Bjorkman, O., & Demmig, B. (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170(4), 489-504.   DOI
5 Bolhar-Nordenkampf, H. R., & Lechner, E. G. (1988). Temperature and light dependent modifications of chlorophyll fluorescence kinetics in spruce needles during winter. Photosynthesis Research, 18(3), 287-298.   DOI
6 Chen, L. S., & Cheng, L. (2009). Photosystem 2 is more tolerant to high temperature in apple (Malus domestica Borkh.) leaves than in fruit peel. Photosynthetica, 47(1), 112-120.   DOI
7 Devisscher, G., & Malek, L. (1993). Freezing sensitivity and genetic variation in forest hardness of black spruce seedling using chlorophyll a variable fluorescence, Plant Physiology, 102, 83.
8 Havaux, M., Strasser, R. J., & Greppin, H. (1991). A theoretical and experimental analysis of the qP and qN coefficients of chlorophyll fluorescence quenching and their relation to photochemical and nonphotochemical events. Photosynthesis Research, 27(1), 41-55.   DOI
9 Hwang, K. H., Lee, J. T., Yun, J. I., Hur, S. O., & Shim, K. M. (2001). Characteristics of nocturnal cooling at a pear orchard in frost-prone area. Korean Journal of Agricultural and Forest Meteorology, 3(4), 206-214.
10 Johnson, G. N., Young, A. J., Scholes, J. D., & Horton, P. (1993). The dissipation of excess excitation energy in British plant species. Plant, Cell & Environment, 16(6), 673-679.   DOI
11 Kang, S.K., Ahn, K. H., Choi, S. T., Do, K. R., & Cho, K. S. (2014). Effect of Planting Site and Direction of Fruiting on Fruit Frost Damage in Persimmon (Diospyros kaki 'Fuyu') Fruits from Environmentfriendly Orchard, Korean Journal of Organic Agriculture, 22(4), 789-799.   DOI
12 Kautsky, A., & Hirsh, A. (1931). Neue Versuche zur Kohlensaure Assimilation, in: The Science of Nature, 19(48), 964.
13 Kwon, Y. A. (2006). The spatial distribution and recent trend of frost occurrence days in South Korea. Journal of the Korean Geographical Society, 41(3), 361-372.
14 Genty, B., Harbinson, J., & Baker, N. R. (1990). Relative quantum efficiencies of the two photosystems of leaves in photorespiratory and non-respiratory conditions. Plant Physiology and Biochemistry (Paris), 28(1), 1-10.
15 Gorbe, E., & Calatayud, A. (2012). Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. Scientia Horticulturae, 138, 24-35.   DOI
16 Govindjee, E. (2004). Chlorophyll a fluorescence: a bit of basics and history, in: (eds. Papageorgiou, G. C., Govindjee, E.), Chlorophyll a Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration (Vol. 19, pp. 1-41). Springer, Dordrecht. The Netherlands.
17 Govindjee, E. (1995). Sixty-three years since Kautsky: chlorophyll a fluorescence. Australian Journal of Plant Physiology, 22(2), 131-160.   DOI
18 Stirbet, A. (2012). Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. Photosynthesis Research, 113(1-3), 15-61.   DOI
19 Lazar, D., & Schansker, G. (2009). Models of chlorophyll a fluorescence transients, in: (eds. Laisk, A., Nedbal, L. Govindjee.), Photosynthesis in Silico: Understanding Complexity from Molecules to Ecosystems, Advances in Photosynthesis and Respiration (Vol. 29, pp. 85-123). Springer, Dordrecht. The Netherlands.
20 Lee, J. G., Kim, Y. J., & Jeong, S. H. (2010). The Climatological Regional Characteristics of the Occurrence of Extraordinary Temperature Events Associated with Cropcultivation. Korean Journal of Agricultural and Forest Meteorology, 12(3), 157-172.   DOI   ScienceOn
21 Lee, S. E., Yoo, S. Y., Kim, D. Y., Ko, T. S., Ok, Y. S., & Kim, T. W. (2014). Proteomic evaluation of the response of soybean (Glycine max var Seoritae) leaves to UV-B. Plant Omics Journal, 7(3), 123.
22 Lichtenthaler, H. K., & Rinderle, U. (1988). The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Critical Reviews in Analytical Chemistry, 19 (Sp. 1), S29-S85.   DOI
23 Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany, 51(345), 659-668.   DOI
24 Nedbal, L., & Whitmarsh, J. (2004). Chlorophyll fluorescence imaging of leaves and fruits. In Chlorophyll a Fluorescence (pp. 389-407). Springer Netherlands.
25 Ogweno, J. O., Song, X. S., Hu, W. H., Shi, K., Zhou, Y. H., & Yu, J. Q. (2009). Detached leaves of tomato differ in their photosynthetic physiological response to moderate high and low temperature stress. Scientia Horticulturae, 123(1), 17-22.   DOI
26 Papageorgiou, G. C., Tsimilli-Michael, M., & Stamatakis, K. (2007). The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. Photosynthesis Research, 94(2-3), 275-290.   DOI
27 Rosenqvist, E., & van Kooten, O. (2003). Chlorophyll fluorescence: a general description and nomenclature. in: (eds. De Ell, J. R., Toivonen, P. M. A.), Practical Applications of Chlorophyll Fluorescence in Plant Biology (pp. 31-77). Springer US.
28 Strasser, R. J., Srivastava, A., & Tsimilli-Michael, M. (2000). The fluorescence transient as a tool to characterize and screen photosynthetic samples. in: (eds. Yunus, M., Pathre, U., Mohanty, P.), Probing photosynthesis: mechanisms, regulation and adaptation, (pp. 443-480), Taylor and Francis, London, UK.
29 Strasser, R. J., Tsimilli-Michael, M., Srivastava. A. (2004). Analysis of the chlorophyll fluorescence transient, in: (eds. Papageorgiou, G. C., Govindjee. E.), Chlorophyll Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration, (Vol. 19, pp. 321-362). Springer, Dordrecht, The Netherlands.
30 Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: an overview. Environmental and Experimental Botany, 61(3), 199-223.   DOI
31 Yoo, S. Y., Eom, K. C., Park, S. H., & Kim, T. W. (2012). Possibility of Drought stress Indexing by Chlorophyll Fluorescence Imaging Technique in Red Pepper (Capsicum annuum L.). Korean Journal of Soil Science and Fertilizer, 45(5), 676-682.   DOI   ScienceOn
32 Yoo, S. Y., Ferrah, S., & Kim, T. W. (2014). Chlorophyll fluorescence imaging analysis for fresh quality assessment of apple and kiwi fruits preserved under different storage conditions. International Journal of Advanced Information Science and Technology (IJAIST), 29, 60-68.
33 Yoo, S. Y., Lee, Y. H., Park, S. H., Choi, K. M., Park, J. Y., Kim, A. R., Hwang, S. M., Lee, M. J., Ko, T. S., & Kim, T. W. (2013). Photochemical Response Analysis on Drought Stress for Red Pepper (Capsiumannuum L.). Korean Journal of Soil Science and Fertilizer, 46(6), 659-664.   DOI
34 Zushi, K., Kajiwara, S., & Matsuzoe, N. (2012). Chlorophyll a fluorescence OJIP transient as a tool to characterize and evaluate response to heat and chilling stress in tomato leaf and fruit. Scientia Horticulturae, 148, 39-46.   DOI   ScienceOn