DOI QR코드

DOI QR Code

Clitoria ternatea L. as a Potential High Quality Forage Legume

  • Abreu, Matheus Lima Correa (Graduate Program in Animal Science, CCTA/UENF) ;
  • Vieira, Ricardo Augusto Mendonca (Laboratorio de Zootecnia e Nutricao Animal (LZNA), Centro de Ciencias e Tecnologias Agropecuarias (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF)) ;
  • Rocha, Norberto Silva (Graduate Program in Animal Science, CCTA/UENF) ;
  • Araujo, Raphael Pavesi (Graduate Program in Animal Science, CCTA/UENF) ;
  • Gloria, Leonardo Siqueira (Graduate Program in Animal Science, CCTA/UENF) ;
  • Fernandes, Alberto Magno (Laboratorio de Zootecnia e Nutricao Animal (LZNA), Centro de Ciencias e Tecnologias Agropecuarias (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF)) ;
  • Lacerda, Paulo Drude De (Empresa de Assistencia Tecnica e Extensao Rural do Estado do Rio de Janeiro (EMATER - RIO), Escritorio local de Saquarema) ;
  • Junior, Antonio Gesualdi (Laboratorio de Zootecnia e Nutricao Animal (LZNA), Centro de Ciencias e Tecnologias Agropecuarias (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF))
  • Received : 2013.06.17
  • Accepted : 2013.09.01
  • Published : 2014.02.01

Abstract

Samples of Clitoria ternatea L. (Cunh$\tilde{a}$) were harvested at 35, 50, 70, and 90 d after a uniformity harvest in a field study designed as a completely randomized design with a total of 18 experimental plots. The dry matter yield of the whole plant was separated quantitatively into leaves, stems, and pods at each harvesting age. Chemical analyses and in vitro gas production kinetics were performed to assess the quality of the plant parts. Yields, chemical composition, and estimates of gas production parameters were analyzed by fitting a mixed statistical model with two types of covariance structures as follows: variance components and an unrestricted structure with heterogeneous variances. Fast and slow gas yielding pools were detected for both leaves and stems, but only a single pool was detected for pods. The homoscedasticity assumption was more likely for all variables, except for some parameters of the gas production kinetics of leaves and stems. There was no presence of typical pods at 35 and 50 d. In the leaves, the fibrous fractions were affected, whereas the non-fibrous fractions were unaffected by the harvesting age. The harvesting age affected the majority of the chemical constituents and gas kinetic parameters related to the stems. The leaves of this legume were the least affected part by the aging process.

Keywords

References

  1. Akaike, H. 1974. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19:716-723. https://doi.org/10.1109/TAC.1974.1100705
  2. AOAC. 1998. Official methods of analysis, 16th Ed., 4th Revision, AOAC International, Gaithersburg.
  3. Araujo Filho, J. A., J. A. Gadelha, N. L. Silva, and R. M. A. Pereira. 1994. Efeito da altura e intervalo de corte na producao de forragem da cunhã (Clitoria ternatea, L.). Pesq. Agropec. Bras. 29:979-982.
  4. Araujo Filho, J. A., J. A. Gadelha, N. L. Silva, E. R. Leite, and M. R. A. Araujo. 1996. Consorciacao do capim-elefante (Pennisetum purpureum, Schum.) e da cunha (Clitoria ternatea, L.) sob quatro intervalos de corte. Past. Trop. 18:47-50.
  5. Avalos, J. F. V., J. A. B. Cárdenas, J. V. R. Ceja, and J. J. B. Guerrero. 2004. Agrotechnics and use of Clitoria ternatea in beef and milk production systems. Tec. Pec. Mex. 42:79-96.
  6. Barro, C. and A. Ribeiro. 1983. The study of Clitoria ternatea L. hay as a forage alternative in tropical countries. Evolution of the chemical composition at four different growth stages. J. Sci. Food Agric. 34:780-782. https://doi.org/10.1002/jsfa.2740340803
  7. Barros, N. N., A. G. Rossetti, and R. B. Carvalho. 2004. Feno de cunha (Clitoria ternateae L.) para acabamento de cordeiros. Cienc. Rural 34:499-504. https://doi.org/10.1590/S0103-84782004000200025
  8. Barros, N. N., L. C. L. Freire, E. A. Lopes, and W. L. Johnson. 1991. Estudo comparativo da digestibilidade de leguminosa forrageira com ovinos e caprinos. 1. Digestibilidade in vivo do feno de cunha. Pesq. Agropec. Bras. 26:1209-1213.
  9. Beuvink, J. M. W. and S. F. Spoelstra. 1992. Interactions between substrate, fermentation end-products, buffering systems and gas-production upon fermentation of different carbohydrates by mixed rumen microorganisms in vitro. Appl. Microbiol. Biotechnol. 37:505-509.
  10. Burnham, K. P. and D. R. Anderson. 2004. Multimodel Inference: Understanding AIC and BIC in Model Selection. Soc. Meth. Res. 33:261-304. https://doi.org/10.1177/0049124104268644
  11. Cook, B., B. Pengelly, S. Brown, J. Donnelly, D. Eagles, A. Franco, J. Hanson, B. Mullen, I. Partridge, M. Peters, and R. Schultze-Kraft. 2005. Tropical Forages: an interactive selection tool, CSIRO, DPI&F Queensland, CIAT, Cali, 2005. Available at: access on: Jan. 20, 2012.
  12. Fox, D. G., L. O. Tedeschi, T. P. Tylutki, J. B. Russell, M. E. Van Amburgh, L. E. Chase, A. N. Pell, and T. R. Overton. 2004. The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion. Anim. Feed Sci. Technol. 112:29-78. https://doi.org/10.1016/j.anifeedsci.2003.10.006
  13. Goering, H. K. and P. J. Van Soest. 1970. Agricultural handbook No. 379. Forage fiber analysis. Washington: U.S.D.A., p. 20.
  14. Gomez, S. M. and A. Kalamani. 2003. Butterfly pea (Clitoria ternatea): A nutritive multipurpose forage legume for the tropics - an overview. Pak. J. Nutr. 2:374-379. https://doi.org/10.3923/pjn.2003.374.379
  15. Gupta, G. K., J. Chalal, and M. Bhatia. 2010. Clitoria ternatea (L.): Old and new aspects. J. Pharm. Res. 3:2610-2614.
  16. Hall, M. B. and D. R. Mertens. 2008. In vitro fermentation vessel type and method alter fiber digestibility estimates. J. Dairy Sci. 91:301-307. https://doi.org/10.3168/jds.2006-689
  17. Hall, M. B., A. N. Pell, and L. E. Chase. 1998. Characteristics of neutral detergent-soluble fiber fermentation by mixed ruminal microbes. Anim. Feed Sci. Technol. 70:23-39. https://doi.org/10.1016/S0377-8401(97)00068-0
  18. Hall, T. J. 1985. Adaptation and agronomy of Clitoria ternatea L. in northern Australia. Trop. Grassl. 19:156-163.
  19. Huhtanen, P., J. Nousiainen, and M. Rinne. 2006. Recent developments in forage evaluation with special reference to practical applications. Agric. Food Sci. 15:293-323. https://doi.org/10.2137/145960606779216317
  20. Juma, H. K., S. A. Abdulrazak, R. W. Muing, and M. K. Ambula. 2006. Evaluation of Clitoria, Gliricidia and Mucuna as nitrogen supplements to Napier grass basal diet in relation to the performance of lactating Jersey cows. Livest. Sci. 103:23-29. https://doi.org/10.1016/j.livsci.2005.12.006
  21. Littell, R. C., G. A. Milliken, W. W. Stroup, R. D. Wolfinger, and O. Schabenberger. 2006. SAS for mixed models, SAS Institute Inc., Cary, USA.
  22. Longland, A. C., M. K. Theodorou, R. Sanderson, S. J. Lister, C. J. Powell, and P. Morris. 1995. Non-starch polysaccharide composition and in vitro fermentability of tropical forage legumes varying in phenolic content. Anim. Feed Sci. Technol. 55:161-177. https://doi.org/10.1016/0377-8401(95)00808-Z
  23. Lucas, H. L. 1964. Stochastic elements in biological models; their sources and significances. In: Stochastic models in medicine and biology (Ed. J. Gurland). University of Wisconsin Press, Madison, pp. 355-383.
  24. Malafaia, P. A. M., S. C. V. Filho, and R. A. M. Vieira. 1999. Kinetic parameters of ruminal degradation estimated with a non-automated system to measure gas production. Livest. Prod. Sci. 58:65-73. https://doi.org/10.1016/S0301-6226(98)00183-3
  25. Mertens, D. R. 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. J. AOAC Int. 85:1217-1240.
  26. Mertens, D. R. 2005. Rate and extent of digestion. In: Quantitative aspects of ruminant digestion and metabolism (Ed. J. Dijkstra, J. M. Forbes, and J. France). CAB International, Wallingford, pp. 13-48.
  27. Neter, J. and W. Wasserman. 1974. Applied linear statistical models, Richard D. Irwin, Inc., Homewood.
  28. Pfister, J. A. and J. C. Malechek. 1986. The voluntary forage intake and nutrition of goats and sheep in the semiarid tropics of northeastern Brazil. J. Anim. Sci. 63:1078-1086.
  29. Russell, J. B. 2002. Rumen microbiology and its role in ruminant nutrition. James B. Russell, Ithaca, p. 120.
  30. Rymer, C., J. A. Huntington, B. A. Williams, and D. I. Givens. 2005. In vitro cumulative gas production techniques: History, methodological considerations and challenges. Anim. Feed Sci. Technol. 123-124(Part 1):9-30. https://doi.org/10.1016/j.anifeedsci.2005.04.055
  31. Schofield, P. and A. N. Pell. 1995. Measurement and kinetic-analysis of the neutral detergent-soluble carbohydrate fraction of legumes and grasses. J. Anim. Sci. 73:3455-3463.
  32. Schofield, P., R. E. Pitt, and A. N. Pell. 1994. Kinetics of fiber digestion from in vitro gas production. J. Anim. Sci. 72:2980-2991.
  33. Smith, L. W., H. K. Goering, and C. H. Gordon. 1972. Relationships of forage compositions with rates of cell wall digestion and indigestibility odf cell walls. J. Dairy Sci. 55:1140-1147. https://doi.org/10.3168/jds.S0022-0302(72)85636-4
  34. Staples, I. B. 1992. Clitoria ternatea L. In: PROSEA (Plant Resources of South-East Asia) Foundation (Ed. Mannetje, L.'t and R. M. Jones). Bogor, Indonesia, 1992. Available at: Accessed on: Sep. 24, 2012.
  35. Tedeschi, L. O., A. Cannas, and D. G. Fox. 2010. A nutrition mathematical model to account for dietary supply and requirements of energy and other nutrients for domesticated small ruminants: The development and evaluation of the Small Ruminant Nutrition System. Small Rumin. Res. 89:174-184. https://doi.org/10.1016/j.smallrumres.2009.12.041
  36. Tedeschi, L. O., W. Chalupa, E. Janczewski, D. G. Fox, C. Sniffen, R. Munson, P. J. Kononoff, and R. Boston. 2008. Evaluation and application of the CPM dairy nutrition model. J. Agric. Sci. 146:171-182.
  37. Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan, and J. France, 1994. A simple gas-production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48:185-197. https://doi.org/10.1016/0377-8401(94)90171-6
  38. Thiex, N. J., H. Manson, S. Anderson, and J. A. Persson. 2002. Determination of crude protein in animal feed, forage, grain, and oilseeds by using block digestion with a copper catalyst and steam distillation into boric acid: collaborative study. J. AOAC Int. 85:309-317.
  39. Thiex, N. J., S. Anderson, and B. Gildemeister. 2003. Crude fat, hexanes extraction, in feed, cereal grain, and forage (Randall/soxtec/submersion method): collaborative study. J. AOAC Int. 86:899-908.
  40. Tylutki, T. P., D. G. Fox, V. M. Durbal, L. O. Tedeschi, J. B. Russell, M. E. Van Amburgh, T. R. Overton, L. E. Chase, and A. N. Pell. 2008. Cornell net carbohydrate and protein system: A model for precision feeding of dairy cattle. Anim. Feed Sci. Technol. 143:174-202. https://doi.org/10.1016/j.anifeedsci.2007.05.010
  41. Upadhyaya, R. S. and V. C. Pachauri. 1983. Nutritive value of Clitoria ternatea L. hay for Barbari goats. Indian J. Anim. Sci. 53:1032-1033.
  42. Van Soest, P. J. 1967. Development of a comprehensive system of feed analyses and its application to forages. J. Anim. Sci. 26:119-128.
  43. Van Soest, P. J. 1994. Nutritional ecology of the ruminant, Cornell University Press, Ithaca, p. 476.
  44. Van Soest, P. J. 1996. Allometry and ecology of feeding behavior and digestive capacity in herbivores: a review. Z. Biol. 15:455-479. https://doi.org/10.1002/(SICI)1098-2361(1996)15:5<455::AID-ZOO3>3.0.CO;2-A
  45. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  46. Vieira, R. A. M., P. R. S .S. Campos, J. F. C. Silva, L. O. Tedeschi, and W. P. Tamy. 2012. Heterogeneity of the digestible insoluble fiber of selected forages in situ. Anim. Feed Sci. Technol. 171:154-166. https://doi.org/10.1016/j.anifeedsci.2011.11.001
  47. Wilson, J. R. and D. R. Mertens. 1995. Cell-wall accessibility and cell structure limitations to microbial digestion of forage. Crop. Sci. 35:251-259. https://doi.org/10.2135/cropsci1995.0011183X003500010046x
  48. Zwietering, M. H., I. Jongenburger, F. M. Rombouts, and K. van't Riet. 1990. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56:1875-1881.

Cited by

  1. Chemical composition and ruminal degradation kinetics of white oat (Avena sativa L.) IPR 126 vol.18, pp.1, 2017, https://doi.org/10.1590/s1519-99402017000100006
  2. L., a potential natural colourant from legume crop pp.0369-9420, 2018, https://doi.org/10.1108/PRT-11-2016-0106
  3. Integrated effect of planting dates and irrigation regimes on morpho-physiological response, forage yield and quality, and water use efficiency of clitoria (Clitoria ternatea L.) in arid region vol.66, pp.2, 2014, https://doi.org/10.1080/03650340.2019.1605165
  4. Evaluation of mathematical models to describe gas production kinetics of some tropical and temperate forages vol.49, pp.None, 2020, https://doi.org/10.37496/rbz4920190197