• Title/Summary/Keyword: plant parameters

Search Result 1,814, Processing Time 0.034 seconds

A Study on the State Estimaion of Dynamic system using Fuzzy Estimator (퍼지 추정기에의한 동적 시스템의 상태 추정에 관한 연구)

  • 문주영;박승현;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.350-355
    • /
    • 1997
  • The problem of mathematical model for an unknown system by measureing its input-output data pairs is generally referred to as state estimates. The state estimation problem is often of importance in its own right since we may want to know the value of the states. For instance, in navigation, we may take noisy positional fixes using satelite or radar navigation, and the estimator can use these measurements to provide accurate estimates of current position, hedaing, and velocity. And the state estimates can also be used for control purposes. Then it is very important to know the state of plant. In this paper, the theory of the minimization of a loss function was used to design the fuzzy system. Here, the used teory is Least Square Esimation method. This parametrization has the Linear in the parameters charcteristic that allows standard parameter estimation technique to be used to estimate the parameters of the fuzzy system. The combination of the fuzzy system and the estimation m thod then performs as a nonlinear estimator. If several fuzzy label are defined for the input variables at the antecedent part, the fuzzy system then behaves as a collection of nonlinear estimators where different regions of rules have different parameters. In simulation results, the fuzzy model controlled a difference in the structure between the actual plant and the fuzzy estimator. It is also proved that the fuzzy system is equivalent to its transformed system. therefore we was able to get the state space equation of system with the estimated paramater.

  • PDF

Nanocarbon synthesis using plant oil and differential responses to various parameters optimized using the Taguchi method

  • Tripathi, Suman;Sharon, Maheshwar;Maldar, N.N.;Shukla, Jayashri;Sharon, Madhuri
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.210-217
    • /
    • 2013
  • The synthesis of carbon nanomaterials (CNMs) by a chemical vapor deposition method using three different plant oils as precursors is presented. Because there are four parameters involved in the synthesis of CNM (i.e., the precursor, reaction temperature of the furnace, catalysts, and the carrier gas), each having three variables, it was decided to use the Taguchi optimization method with the 'the larger the better' concept. The best parameter regarding the yield of carbon varied for each type of precursor oil. It was a temperature of $900^{\circ}C$ + Ni as a catalyst for neem oil; $700^{\circ}C$ + Co for karanja oil and $500^{\circ}C$ + Zn as a catalyst for castor oil. The morphology of the nanocarbon produced was also impacted by different parameters. Neem oil and castor oil produced carbon nanotube (CNT) at $900^{\circ}C$; at lower temperatures, sphere-like structures developed. In contrast, karanja oil produced CNTs at all the assessed temperatures. X-ray diffraction and Raman diffraction analyses confirmed that the nanocarbon (both carbon nano beads and CNTs) produced were graphitic in nature.

Waste Isolation Pilot Plant Performance Assessment: Radionuclide Release Sensitivity to Diminished Brine and Gas Flows to/from Transuranic Waste Disposal Areas

  • Day, Brad A.;Camphouse, R.C.;Zeitler, Todd R.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.450-457
    • /
    • 2017
  • Waste Isolation Pilot Plant repository releases are evaluated through the application of modified parameters to simulate accelerated creep closure, include capillary pressure effects on relative permeability, and increase brine and gas saturation in the operations and experimental (OPS/EXP) areas. The modifications to the repository model result in increased pressures and decreased brine saturations in waste areas and increased pressures and brine saturations in the OPS/EXP areas. Brine flows up the borehole during a hypothetical drilling intrusion are nearly identical and brine flows up the shaft are decreased. The modified parameters essentially halt the flow of gas from the southern waste areas to the northern nonwaste areas, except as transported through the marker beds and anhydrite layers. The combination of slightly increased waste region pressures and very slightly decreased brine saturations result in a modest increase in spallings and no significant effect on direct brine releases, with total releases from the Culebra and cutting and caving releases unaffected. Overall, the effects on total high-probability mean releases from the repository are insignificant, with total low-probability mean releases minimally increased. It is concluded that the modified OPS/EXP area parameters have an insignificant effect on the prediction of total releases.

Design of a Fuzzy Logic Controller Using Response Surface Methodology (반응표면분석법을 이용한 퍼지제어기 설계)

  • 이세헌
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.6
    • /
    • pp.591-597
    • /
    • 1999
  • When fuzzy logic controllers which are designed based on plant models and intuitive base are applied to real plants, the control systems may not give satisfactory control results due to the modeling error and the lack of knowledge on the plants. In that case. the controller must be retuned by adjusting the control parameters; this retuning process may require a large number of trial-and-error evaluations and thus much time and cost. In order to resolve these problems, we propose a systematic and efficient procedure for designing a fuzzy logic controller using response surface methodology. First wc select the initial optimal conditions of control parameters using a genetic algorithm, in which a nominal plant model with intrinsic modeling errors is used. And then we determine the tinal optimal conditions of the control parameters using response surface methodology. Computer simulations are performed to verify the capability of the proposed method.

  • PDF

Leak flow prediction during loss of coolant accidents using deep fuzzy neural networks

  • Park, Ji Hun;An, Ye Ji;Yoo, Kwae Hwan;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2547-2555
    • /
    • 2021
  • The frequency of reactor coolant leakage is expected to increase over the lifetime of a nuclear power plant owing to degradation mechanisms, such as flow-acceleration corrosion and stress corrosion cracking. When loss of coolant accidents (LOCAs) occur, several parameters change rapidly depending on the size and location of the cracks. In this study, leak flow during LOCAs is predicted using a deep fuzzy neural network (DFNN) model. The DFNN model is based on fuzzy neural network (FNN) modules and has a structure where the FNN modules are sequentially connected. Because the DFNN model is based on the FNN modules, the performance factors are the number of FNN modules and the parameters of the FNN module. These parameters are determined by a least-squares method combined with a genetic algorithm; the number of FNN modules is determined automatically by cross checking a fitness function using the verification dataset output to prevent an overfitting problem. To acquire the data of LOCAs, an optimized power reactor-1000 was simulated using a modular accident analysis program code. The predicted results of the DFNN model are found to be superior to those predicted in previous works. The leak flow prediction results obtained in this study will be useful to check the core integrity in nuclear power plant during LOCAs. This information is also expected to reduce the workload of the operators.

Long-term prediction of safety parameters with uncertainty estimation in emergency situations at nuclear power plants

  • Hyojin Kim;Jonghyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1630-1643
    • /
    • 2023
  • The correct situation awareness (SA) of operators is important for managing nuclear power plants (NPPs), particularly in accident-related situations. Among the three levels of SA suggested by Ensley, Level 3 SA (i.e., projection of the future status of the situation) is challenging because of the complexity of NPPs as well as the uncertainty of accidents. Hence, several prediction methods using artificial intelligence techniques have been proposed to assist operators in accident prediction. However, these methods only predict short-term plant status (e.g., the status after a few minutes) and do not provide information regarding the uncertainty associated with the prediction. This paper proposes an algorithm that can predict the multivariate and long-term behavior of plant parameters for 2 h with 120 steps and provide the uncertainty of the prediction. The algorithm applies bidirectional long short-term memory and an attention mechanism, which enable the algorithm to predict the precise long-term trends of the parameters with high prediction accuracy. A conditional variational autoencoder was used to provide uncertainty information about the network prediction. The algorithm was trained, optimized, and validated using a compact nuclear simulator for a Westinghouse 900 MWe NPP.

Biological Control of Bacterial Fruit Blotch of Watermelon Pathogen (Acidovorax citrulli) with Rhizosphere Associated Bacteria

  • Adhikari, Mahesh;Yadav, Dil Raj;Kim, Sang Woo;Um, Young Hyun;Kim, Hyun Seung;Lee, Seong Chan;Song, Jeong Young;Kim, Hong Gi;Lee, Youn Su
    • The Plant Pathology Journal
    • /
    • v.33 no.2
    • /
    • pp.170-183
    • /
    • 2017
  • Bacterial fruit blotch (BFB), which is caused by Acidovorax citrulli, is a serious threat to watermelon growers around the world. The present study was conducted to screen effective rhizobacterial isolates against 35 different A. citrulli isolates and determine their efficacy on BFB and growth parameters of watermelon. Two rhizobacterial isolates viz. Paenibacillus polymyxa (SN-22), Sinomonas atrocyanea (NSB-27) showed high inhibitory activity in the preliminary screening and were further evaluated for their effect on BFB and growth parameters of three different watermelon varieties under greenhouse conditions. The greenhouse experiment result revealed that SN-22 and NSB-27 significantly reduced BFB and had significant stimulatory effect on total chlorophyll content, plant height, total fresh weight and total dry weight compared to uninoculated plants across the tested three watermelon varieties. Analysis of the 16S ribosomal RNA (rRNA) sequences revealed that strains SN-22 belong to P. polymyxa and NSB-27 to S. atrocyanea with the bootstrap value of 99% and 98%, respectively. The isolates SN-22 and NSB-27 were tested for antagonistic and PGP traits. The result showed that the tested isolates produced siderophore, hydrolytic enzymes (protease and cellulose), chitinase, starch hydrolytic enzymes and they showed phosphate as well as zinc solubilizing capacity. This is the first report of P. polymyxa (SN-22) and S. atrocyanea (NSB-27) as biocontrol-plant growth promoting rhizobacteria on watermelon.

Effect of salt stress on the anthocyanin content and associated genes in Sorghum bicolor L.

  • Jeon, Donghyun;Lee, Solji;Choi, Sehyun;Seo, Sumin;Kim, Changsoo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.105-117
    • /
    • 2020
  • Abiotic stress is one of the most serious problems in plant productivity because it dramatically delays plant growth and development. One of the abiotic stresses, soil salinity, has an adverse effect on plant growth, particularly in areas where irrigation is necessary like semiarid Asia and Africa. Among several physiological parameters, anthocyanin accumulation is a valuable indicator of the condition of the plant, and it tends to increase under salt stress conditions because of its protective role in such an environment. Consequently, it may be important to search for well adapted genotypes for upcoming climate changes. Anthocyanins are known to have important roles in defense against biotic and abiotic stresses, providing important functions for protecting plant cells from reactive oxygen species. In this study, we investigated the anthocyanin accumulation between two Korean sorghum genotypes, Sodamchal and Nampungchal. The two genotypes were subjected to a regulated salinity condition, and the anthocyanin contents were evaluated in both. In Nampungchal, the anthocyanin content increased with 150 mM NaCl treatment during the time course of the experiment. However, the anthocyanin content of Sodamchal decreased in the same condition. The measured values of the anthocyanin content should be useful to identify the intensity of the salt tolerance in Sorghum bicolor L. Furthermore, we studied gene expression profiling of salt stress related genes with qRT-PCR. These results suggest that Nampungchal is a more tolerant genotype to salt stress compared to Sodamchal. This information should be useful for breeding salt-resistant cultivars in sorghum.

Preliminary pharmacognostical and phytochemical evaluation of Stachys tibetica Vatke

  • Kumar, Dinesh;Bhat, Zulfiqar Ali;Kumar, Vijender;Chashoo, Ishtaq Ahmad;Khan, Nisar Ahmad;Ara, Irfat;Shah, Mohammad Yassin
    • CELLMED
    • /
    • v.2 no.1
    • /
    • pp.11.1-11.7
    • /
    • 2012
  • Stachys tibetica Vatke (Lamiaceae) is an important medicinal plant in the folk medicine of Ladakh, India and Tibet for the treatment of various mental disorders. Infusion and decoction of the whole plant is used as a cup of tea for a severe fever, headaches and to relieve tension. The recent study is aimed to evaluate the preliminary pharmacognostical and phytochemical nature of Stachys tibetica Vatke. The whole plant material was subjected to successive soxhlet extraction with petroleum ether (40 - $60^{\circ}C$), chloroform, ethyl acetate, methanol and finally decocted with water to get the respective extracts. The fluorescence characteristics of the powdered materials were analysed under ultraviolet light and ordinary light. Different physicochemical parameters such as ash value, extractive value, foaming index, pH values, loss on drying and determination of foreign matter were carried out as per WHO guidelines. The total fat, flavonoid, saponin and volatile contents were also determined. Macroscopical studies revealed the authentication of the plant drug. Physicochemical parameters helped to standardize the plant material while preliminary qualitative chemical tests of different extracts showed the presence of Glycosides, Carbohydrates, Phytosterols/triterpenoids, Saponins, Fixed oils, Fats and phenols/tannins. Quantification of the total flavonoids and saponins and contents were determined as $54.66{\pm}0.58mg/g$ and $75.42{\pm}0.48mg/kg$ respectively, while the volatile and fat contents were 6.5% and 0.7% respectively. Results may lay the foundation for the standardization of the drug and discovery of new molecules from S. tibetica for the treatment of various diseases.

Synergistic interactions of Aegle marmelos leaf, Emblica officinalis fruit and Ocimum sanctum leaf extracts in the regulation of hyperthyroidism and / or hyperglycaemia

  • Panda, Sunanda;Kar, Anand
    • Advances in Traditional Medicine
    • /
    • v.4 no.1
    • /
    • pp.37-43
    • /
    • 2004
  • The effects of Aegle marmelos (Rutaceae) leaf, Emblica officinalis (Euphorbiaceae) fruit and Ocimum sanctum. (Labiateae) leaf extracts were studied in L-thyroxine (0.5 mg/kg) induced hyperthyroidic mice. Separately combined effects of these three plant extracts and of a commonly used antithyroidic drug, Propyl thiouracil (PTU) were investigated for comparison. Serum concentration of thyroxine $(T_4)$, triiodothyronine $(T_3)$, glucose and the activity of hepatic Glucose 6-Phosphatase (G-6-Pase) were considered as main parameters. Hepatic lipid peroxidation (LPO), superoxide dismutase (SOD) and Catalase (CAT) activities were also studied to reveal the toxic effect of the plant extracts, if any. While exogenous $T_4$ enhanced serum concentration of $T_4$, $T_3$, glucose and the activity of hepatic G-6-Pase, a simultaneous administration of either A. marmelos leaf (1.0 mg/kg), E. officinalis fruit( 30 mg/kg) and O. sanctum leaf (50 mg/kg) extracts, to hyperthyroidic animals decreased all these parameters. However, the effects were more pronounced, as nearly normal thyroid function and serum glucose concentration were exhibited when all three plant extracts were administered together. A decrease in LPO and a concomitant increase in SOD and the CAT activities indicated the safe and antiperoxidative nature of the plant extracts, administered either alone or in combination. Our findings reveal that the three test plant materials exhibit synergistic effects without any hepatotoxicity, suggesting their potential use in the amelioration of hyperthyroidism and/ or hyperglycaemia.