• Title/Summary/Keyword: plant nutrition

Search Result 1,497, Processing Time 0.033 seconds

Carotenoids and total phenolic contents in plant foods commonly consumed in Korea

  • Yoon, Gun-Ae;Yeum, Kyung-Jin;Cho, Yoon-Suk;Chen, C.Y. Oliver;Tang, Guangwen;Blumberg, Jeffrey B.;Russell, Robert M.;Yoon, Sun;LeeKim, Yang Cha
    • Nutrition Research and Practice
    • /
    • v.6 no.6
    • /
    • pp.481-490
    • /
    • 2012
  • Phytochemicals are reported to provide various biological functions leading to the promotion of health as well as the reduced risk of chronic diseases. Fat-soluble plant pigments, carotenoids, are extensively studied micronutrient phytochemicals for their potential health benefits. It is noteworthy that specific carotenoids may be responsible for different protective effects against certain diseases. In addition, each carotenoid can be obtained from different types of plant foods. Considering the fact that the phytochemical content in foods can vary according to, but not limited to, the varieties and culture conditions, it is important to establish a database of phytochemicals in locally produced plant foods. Currently, information on individual carotenoid content in plant foods commonly consumed in Korea is lacking. As the first step to support the production and consumption of sustainable local plant foods, carotenoids and total phenolic contents of plant foods commonly consumed in Korea are presented and their potential biological functions are discussed in this review.

The effects of plant extracts on lipid metabolism of chickens - A review

  • Xuedong Ding;Ilias Giannenas;Ioannis Skoufos;Jing Wang;Weiyun Zhu
    • Animal Bioscience
    • /
    • v.36 no.5
    • /
    • pp.679-691
    • /
    • 2023
  • The fat deposition is an important factor affecting chicken meat quality, which is closely related to lipid metabolism of chickens. Therefore, it is important to regulate the lipid metabolism of chickens to improve the chicken meat quality. Plant extracts have special regulatory effects on animal's growth and health and have been widely used in chicken breeding. Some plant extracts have been reported to have functions of changing the fatty acid composition, reducing abdominal fat percentage, and enhancing the intramuscular fat content of chickens by improving the antioxidant capacity, regulating the expression of genes, enzymes, and signaling pathways related to lipid metabolism, modulating intestinal microbiota, affecting hormones level, and regulating DNA methylation. This paper reviewed the application and mechanism of plant extracts on regulating lipid metabolism of chickens to provide a reference for the further application of plant extracts in chicken breeding.

Physiological and Genetic Mechanisms for Nitrogen-Use Efficiency in Maize

  • Mi, Guohua;Chen, Fanjun;Zhang, Fusuo
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.57-63
    • /
    • 2007
  • Due to the strong influence of nitrogen(N) on plant productivity, a vast amount of N fertilizers is used to maximize crop yield. Over-use of N fertilizers leads to severe pollution of the environment, especially the aquatic ecosystem, as well as reducing farmer's income. Growing of N-efficient cultivars is an important prerequisite for integrated nutrient management strategies in both low- and high-input agriculture. Taking maize as a sample crop, this paper reviews the response of plants to low N stress, the physiological processes which may control N-use efficiency in low-N input conditions, and the genetic and molecular biological aspects of N-use efficiency. Since the harvest index(HI) of modern cultivars is quite high, further improvement of these cultivars to adapt to low N soils should aim to increase their capacity to accumulate N at low N levels. To achieve this goal, establishment and maintenance of a large root system during the growth period may be essential. To reduce the cost of N and carbon for root growth, a strong response of lateral root growth to nitrate-rich patches may be desired. Furthermore, a large proportion of N accumulated in roots at early growth stages should be remobilized for grain growth in the late filling stage to increase N-utilization efficiency. Some QTLs and genes related to maize yield as well as root traits have been identified. However, their significance in improving maize NUE at low N inputs in the field need to be elucidated.

  • PDF

DNA, RNA, Protein and Yield of the Soybean Plant, Glycine max Merr., as Affected by Phosphorus Nutrition (대두의 핵산, 단백질 및 물질생산에 미치는 인산비료의 효과)

  • 장남기
    • Journal of Plant Biology
    • /
    • v.16 no.1_2
    • /
    • pp.23-29
    • /
    • 1973
  • The effect of phosphorus nutrition on the content of deoxyribonucleic acid(DNA), ribonucleic acid(RNA), crude protein and plant growth of soybean plant(Glycine max, Merr.) was studied. Yields of the above-and under-ground parts of the soybean plant in terms of dry weight, the amounts of crude protein, RNA and DNA continued to increase with increasing phosphorus supply. The amounts of RNA and crude protein were highest in the leaf tissues where most intensive growth was taking place. The relationships among DNA, RNA, crude protein and plant growth appeared to consist of the central dogma which has immortalized, while DNA in plant tissue was subject to charges cuased by external environmental facters such as phosphorus nutrition.

  • PDF

Isolation and characterization of three maize aquaporin genes, ZmNIP2;1, ZmNIP2;4 and ZmTIP4;4 involved in urea transport

  • Gu, Riliang;Chen, Xiaoling;Zhou, Yuling;Yuan, Lixing
    • BMB Reports
    • /
    • v.45 no.2
    • /
    • pp.96-101
    • /
    • 2012
  • Urea-based nitrogen fertilizer was widely utilized in maize production, but transporters involved in urea uptake, translocation and cellular homeostasis have not been identified. Here, we isolated three maize aquapoin genes, ZmNIP2;1, ZmNIP2;4 and ZmTIP4;4, from a cDNA library by heterogous complementation of a urea uptake-defective yeast. ZmNIP2;1 and ZmNIP2;4 belonged to the nodulin 26-like intrinsic proteins (NIPs) localized at plasma membrane, and ZmTIP4;4 belonged to the tonoplast intrinsic protein (TIPs) at vacuolar membrane. Quantitative RT-PCR revealed that ZmNIP2;1 was expressed constitutively in various organs while ZmNIP2;4 and ZmTIP4;4 transcripts were abundant in reproductive organs and roots. Expression of ZmTIP4;4 was significantly increased in roots and expanded leaves under nitrogen starvation, while those of ZmNIP2;1 and ZmNIP2;4 remained unaffected. Functions of maize aquapoin genes in urea transport together with their distinct expression manners suggested that they might play diverse roles on urea uptake and translocation, or equilibrating urea concentration across tonoplast.

Protozoa population and carbohydrate fermentation in sheep fed diet with different plant additives

  • Majewska, Malgorzata P.;Miltko, Renata;Belzecki, Grzegorz;Kedzierska, Aneta;Kowalik, Barbara
    • Animal Bioscience
    • /
    • v.34 no.7
    • /
    • pp.1146-1156
    • /
    • 2021
  • Objective: The aim of the study was to compare the effect of two plant additives, rich in polyphenolic compounds, supplemented to sheep diets on microorganisms and carbohydrate fermentation in rumen. Methods: In the experiment, 6 ewes of the Polish Mountain breed were fitted with ruminal cannulas. Sheep were divided into three feeding groups. The study was performed in a cross-over design of two animals in each group, with three experimental periods (n = 6 per each group). The animals were fed a control diet (CON) or additionally received 3 g of dry and milled lingonberry leaves (VVI) or oak bark (QUE). Additionally, plant material was analyzed for tannins concentration. Results: Regardless of sampling time, QUE diet increased the number of total protozoa, as well as Entodinium spp., Diplodinium spp. and Isotrichidae family, while decreased bacterial mass. In turn, a reduced number of Diplodinium spp. and increased Ophryoscolex spp. population were noted in VVI fed sheep. During whole sampling time (0, 2, 4, and 8 h), the number of protozoa in ruminal fluid of QUE sheep was gradually reduced as opposed to animals receiving CON and VVI diet, where rapid shifts in the protozoa number were observed. Moreover, supplementing sheep with QUE diet increased molar proportions of butyrate and isoacids in ruminal fluid. Unfortunately, none of the tested additives affected gas production. Conclusion: The addition of VVI or QUE in a small dose to sheep diets differently affected rumen microorganisms and fermentation parameters, probably because of various contribution of catechins in tested plant materials. However, it is stated that QUE diet seems to create more favorable conditions for growth and development of ciliates. Nonetheless, the results of the present study showed that VVI and QUE additives could serve as potential natural modulators of microorganism populations and, consequently, carbohydrate digestion in ruminants.

Studies on the Effect of Silicon Nutrition on Plant Growth, Mineral Contents and Endogenous Bioactive Gibberellins of Three Rice Cultivars

  • Jang, Soo-Won;Hamayun, Muhammad;Sohn, Eun-Young;Shin, Dong-Hyun;Kim, Kil-Ung;Lee, In-Jung
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.45-49
    • /
    • 2007
  • Silicon is one of the key elements for healthy growth and development in rice crops. We analyzed the effect of silicon(Si) on some growth parameters, plant mineral contents, and bioactive gibberellins in three rice cultivars. Silicon was applied at the rates of 0 kg/0.1ha(control), 40 kg/0.1ha, and 80 kg/0.1ha throughout the course of experiment. Plant growth parameters were enhanced by the application of elevated Si, though plant height and culm length were more favorably affected than the respective dry weights. The plant mineral contents analyzed also increased in treatments where Si was applied without potassium, demonstrating that Si application promotes the absorption of these minerals in rice crops. The endogenous gibberellins measured in our study showed that $GA_1$ is the only bioactive GA form present in rice seedlings. The endogenous $GA_1$ and its precursor $GA_{20}$ contents increased after Si application. However, this increase in endogenous $GA_1$ and $GA_{20}$ contents, and plant growth parameters were different according to the rice cultivars. Our results indicate that Si is a beneficial element in rice nutrition and that different cultivars of Oryza sativa show differential responses to Si nutrition in terms of their growth and development.

  • PDF