• Title/Summary/Keyword: plant major nutrients

Search Result 74, Processing Time 0.025 seconds

Current status of comparative compositional analysis for GM crop biosafety assessment (유전자변형작물 안전성평가를 위한 영양성분 비교연구 동향)

  • Kim, Eun-Ha;Oh, Seon-Woo;Lee, Sang-Gu;Lee, Sung-Kon;Ryu, Tae-Hun
    • Journal of Plant Biotechnology
    • /
    • v.47 no.4
    • /
    • pp.261-272
    • /
    • 2020
  • Approvals for cultivation and import of genetically modified (GM) crops have dramatically increased around the world. Comparative compositional studies are an important aspect of safety assessments of products from GM crops and are based on substantial equivalence. Compositional analyses focus on determining similarities and differences between the compositions of the GM crops and their conventional counterparts, and thereby assessing the compositional equivalence of GM crops and their conventional comparators. The analytes, such as major constituents, key nutrients, and antinutrients, are generally determined on a crop-specific basis according to the OECD consensus document. The use of standard methods throughout the processes, such as selection of comparators, field trials, analytical methods, and statistical data analysis, is crucial. In this study, we showed the general framework of compositional studies. Literature for compositional studies of GM crops conducted abroad and in Korea was reviewed to obtain information about analytes, conventional counterparts, cultivation year, location, and statistical methods. The studies conducted abroad assessed for commercial release of GM crops such as soybean, maize, and cotton, while domestic studies were mainly performed for research in rice. In addition, we suggested a guidance for conventional comparators and field trials applicable to the domestic situation.

A Study on Grade Classification for Improvement of Water Quality and Water Quality Characteristics in the Han River Watershed Tributaries (한강 수계 지류 하천의 수질 특성 및 수질 개선을 위한 등급화 방안 연구)

  • Cho, Yong-Chul;Park, Minji;Shin, Kyungyong;Choi, Hyeon-Mi;Kim, Sanghun;Yu, Soonju
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.3
    • /
    • pp.215-230
    • /
    • 2019
  • The objective of this research is to evaluate the water quality characteristics using the statistical analysis of major tributaries in the Han River and to provide water quality improvement plan by selecting tributaries that should be preferentially managed by river grade classification method. The major 15 tributaries in Han River watershed were monitored for discharge and water quality during January-December 2017. As a result of the correlation analysis, the river discharge has been not correlation with other water quality constituents (p>0.05) but COD and TOC were significantly correlated (r=0.957, p<0.01). The main cause of water quality fluctuation was organic pollutants and nutrients in the principal component analysis (PCA) method. The BOD, COD, TOC, TN, and TP were found to be significantly different (p<0.05) by seasonal in result of one-way ANOVA analysis. Result of river grade classification by quantitative indicators the tributaries requiring improvement of water quality were Gulpocheon, Anyangcheon, Wangsukcheon, and Tancheon which affected by wastewater treatment plant.In this research, we determined tributaries that need to improve the water quality of Han River watershed and it can be used as an important data for efficient water quality management.

Characteristics of Nutrient Uptake and Stubble Regrowth of Grain Sorghum in Plastic Film House (비닐하우스 재배 수수의 그루터기 재생 및 양분흡수 특성)

  • Yun, Eul-Soo;Jung, Ki-Yeul;Park, Chang-Yeong;Hwang, Jae-Bog;Choi, Young-Dae;Jeon, Seung-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.992-997
    • /
    • 2012
  • This study was conducted to get the basic information for absorb enhancement of accumulated soil nutrients in plastic film house. The grain sorghum (Sorghum bicolor L.) was sowing in plastic film house which soil nutrient accumulated moderately and was cutting at major growth period of sorghum. We were analyzed the regrowth pattern, biomass due to cutting time and amount of plant nutrient of grain sorghum. The obtained results were as follows. The heading date after cutting of sorghum in plastic film house was came to about 35 days. The accumulated of plant height were the longest as 379.4 cm in cutting at milk stage. The total biomass of sorghum in cutting at heading stage was 1.73 ton $10a^{-1}$ in cutting at heading stage. The high grain yields were produced with non-cutting and cutting at 10 leaves stage as 75~113 kg $10a^{-1}$ but the lowest grain yields were the cutting plots at booting stage as below 24 kg $10a^{-1}$. The content of nutrient in sorghum plant was low as progress of growth. The concentrations in aboveground sorghum due to plant parts was in order to leaves > panicle > stalk. The nitrogen content of sorghum was 0.6~0.7% in stalk, 1.5~1.6% in panicle and 1.8~2.3% in leaves. The amount of nutrient absorbed in sorghum was 4.2 kg $10a^{-1}$ in nitrogen, 1.7 kg $10a^{-1}$ phosphorus and 7.7 kg $10a^{-1}$ in potassium and the absorbing different by cutting time in order to booting > non-cutting > panicle formation ${\geq}$ milk ripe > 10 leaves stage.

Major plant nutrient-releasing patterns in the leachates from the soil incorporated rice hull biochar adjusted pH with dry fish powder (산도를 조절한 왕겨 바이오차와 어분 혼합물을 처리한 토양 침출수의 양분용출 패턴)

  • Jae-Lee Choi;DongKeon Lee;MinJeong Kim;JooHee Nam;ChangKi Shim;SeungGil Hong;JoungDu Shin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.55-64
    • /
    • 2023
  • This batch experiment was conducted to investigate the patterns of major plant nutrients in the leachates from the soil that was incorporated with rice hull biochar adjusted pH with dry fish powder utilizing rice hull biochar for loading the soil microorganisms. The rice hull biochar adjusted pH between 6.0 and 7.0, and the mixture ratio of rice hull biochar and dry fish powder was 4:6. The treatments consisted of three; the soil incorporated with rice hull biochar non-adjusted pH with dry fish powder as control (RB + DF), the soil incorporated with rice hull biochar adjusted pH by pyroligneous acid solution and dry fish powder (RBP+DF), and the soil incorporated with rice hull biochar adjusted pH by citric acid solution and dry fish powder (RBC+DF). NH4-N, NO3-N, PO4-P, and K concentrations in the leachates were analyzed during incubation. The accumulated NH4-N and PO4-P concentrations in the leachates from the RBC+DF treatment were the highest during leaching periods. The highest accumulated NO3-N and K concentrations in the leachates from the RBP+DF treatment were observed. It observed that NH4-N and PO4-P were more released in the adjusted citric acid solution, but NO3-N and K were less released than those in the pyroligneous acid solution due to their low absorption capacity. Furthermore, it is necessary to investigate crop growth responses to the soil incorporated with adjusted pH rice hull biochar and dry fish powder for loading soil microorganisms.

Absorption of Nutrients on Different Growth Stages in Maize with Tillers (다수다얼성 옥수수 교잡종($IK_1$/IRI)의 생육시기별 양분흡수)

  • Joonsi, Asada;Hee Bong, Lee;Bong Ho, Choe;Moon Kyu, Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.3
    • /
    • pp.224-229
    • /
    • 1992
  • The objective of the study was to clarify the pattern of fertilizer absorption by tillering hybrid, IK$_1$/IRI. Nangano No.1 hybrid was included as non-tillering check hybrid. Hybrids were grown in pots and the plants were periodically analyzed for their chemical components like nitrogen, phosphorus, potassium, calcium and magnesium. The results obtained indicate that the amount of nitrogen, phosphorus and potassium absorbed by IK$_1$/IRI was slightly lower than that absorbed by Nangano No.1, except nitrogen in the maturity of IK$_1$ /IRI. However, no major differences were observed for the calcium and magnesium content between two hybrids. In most cases amount of nitrogen and calcium in the plant of two hybrids seemed to decrease as the plants mature, while amount of those chemicals in the ears increased. Nitrogen efficiency for IK$_1$ /IRI seemed a little lower than that for Nangano No.1.

  • PDF

The Relation Between Water Quality and Structure of Aquatic Ecosystem in Agriculture Reservoir, Otae-ji (농업용저수지인 오태지의 수생태계구조와 수질과의 관련성)

  • Seo, Jung-Kwan;Lee, Hae-Jin;Jeong, Hyun-Gi;Tak, Bo-Mi;Lee, Jae-Kwan;Kim, In-Taek;Lee, Jong-Eun;Hwang, Ui-Wook
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1407-1421
    • /
    • 2010
  • This study was carried out to elucidate the relation between water quality and structure of the aquatic ecosystem in the agriculture reservoir Otae-ji from January to December in 2009. The proportion of forest was 46.98%, which means that non-point sources are major contributor of water pollution in this area. The annual mean COD(Chemical Oxygen Demand) in Otae-ji was $3.6mgL^{-1}$, indicating, level II of environmental standards and the trophic state was mesotrophic. Although total phosporus concentration in the reservoir was high in August due to large inflow of nutrients from outside the reservoir during monsoon season, there was no break out of significant algal bloom in the summer. The seasonal succession of phytoplankton showed that the dinophyta dominated in the the spring, chlorophyta in the summer, chrysophyta and chlorophyta in the autumn and chrysophyta in the winter. In case of zooplankton, rotifers dominated in the most seasons, but cladoceran(Bosmina longirostris) dominated in June and copepod(Nauplii) in August. The macrophyte plants showed diverse species compositon consisted of 3 varieties, 24 species, 23 genera, 15 families and 14 orders. The macroinvertebrates also showed various FFG(Functional Feeding Groups) such as GC(Gathering-Collector), P(Predator), SH(Shedder), FC(Filter-Collector) and PP(Plant-Piercer). Ecosystem stability analysis using aquatic insects was classified as Group I, which has high resilience and resistance indices. A total of 14 species of fish was collected but exotic species such as Lepomis macrochirus and Micropterus salmoides were not found in Otae-ji. In conclusion, the preservation of healthy food wed in the reservoir ecosystem is closely related to water quality management as well as effective prevention of algal bloom by helping good material circulation in aquatic ecosystems.

Winterkill and Strategy of Golf Course Management: A Review (동절기 피해의 이해와 겨울철 골프장 관리: 리뷰)

  • Lee, Sang-Kook
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.2
    • /
    • pp.133-137
    • /
    • 2011
  • Winterkill can be defined as any injury including freeze stress kill, winter desiccation, and low temperature disease to turfgrass plants that occurs during the winter period. The major damages from winterkill were low temperature kill, crown hydration, and winter desiccation. Low temperature kill is caused by air and soil temperature. Soil temperature affect more severe to turfgrass than air temperature because low soil temperature cause fetal damage to turfgrass crown. Crown hydration is a form of winter injury in which intercellular water within the plant freezes and causes physical injury to the cell membrane and wall. This is eventually resulted in dehydration of cell. Winter desiccation is the death of leaves or whole plants due to drought during the winter period. To reduce winterkill damage, cultivar selection is very important. If changing cultivar is not allowed, cold temperature hardiness needs to be increased by providing nutrients especially phosphorus and potassium in the late fall. Turf cover is effective way to reduce winterkill damage. Remaining snow is positive process to reduce winterkill damage by insulating soil temperature. The previous researches reported many materials as turf cover such as straw, polypropylene, polyester, and wood mat. Aeration and topdressing is one of the process against winterkill. Both methods are mainly conducted to reduce thickness of thatch layer. In recent, relatively new materials called black or winter topdressing sand are used to protect soil temperature from low air temperature and thaw ice crystal that may remain in soil.

Growth and yield responses of rice varieties to various soil water deficit conditions under different soil types

  • Kikuta, Mayumi;Samejima, Hiroaki;Magoti, Rahab;Kimani, John M.;Yamauchi, Akira;Makihara, Daigo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.322-322
    • /
    • 2017
  • To avoid drought stress under rainfed upland conditions, it is important for rice to efficiently utilize water at shallow soil layers supplied by rainfall, and access to water retained in deer soil layers. The root developmental characteristics of rice, which play important role in the adaptability to drought conditions, vary depending on the variety. Moreover, water availability for plant differs depending on the soil types that have different physical properties such as water holding capacity, permeability, capillary force, penetration resistance, etc. In this study, we evaluated growth and yield responses of rice varieties to various soil water deficit conditions under three different soil types. The experiment was conducted in a plastic greenhouse at the Kenya Agricultural and Livestock Research Organization-Mwea from October 2016 to January 2017. Two upland varieties (NERICA 1 and 4) and one lowland variety (Komboka) were grown in handmade PVC pots (15.2 cm diameter and 85.0 cm height) filled with three different types of soil collected from major rice-growing areas of the country, namely black cotton (BC), red clay (RC), and sandy clay (SC). Three watering methods, 1) supplying water only from the soil surface (W1), 2) supplying water only from the bottom of the pots (W2), and 3) supplying water both from the soil surface and the bottom of pots (W3), were imposed from 40 days after sowing to maturity. Soil water content (SWC) at 20, 40, and 60 cm depths was measured regularly. At the harvesting stage, aboveground and root samples were collected to determine total dry weight (TDW), grain yield, and root length at 0-20, 20-40, 40-60, and 60-80 cm soil layers. Irrespective of the watering methods, the greatest root development was obtained in RC, while that in BC was less than other two soils. In BC, the degree of yield reduction under W1 was less than that in RC and SC, which could be attributed to the higher water holding capacity of BC. In RC, the growth and yield reduction observed in all varieties under W1 was attributed to the severe drought stress. On the other hand, under W2, SWC at the shallow soil depth in RC was maintained because of its higher capillary force compared with BC and SC. As the result, growths and yields in RC were not suppressed under W2. In SC, deep root development was not promoted by W2 irrespective of the varieties, which resulted in significant yield losses. Under W1, the rice growth and yield in SC was decreased although shallow root development was enhanced, and the stomatal conductance was maintained higher than RC. It was suspected that W1 caused nutrients leaching in SC because of its higher permeability. Under rainfed conditions, growth and yield of rice can be strongly affected by soil types because dynamics of soil water conditions change according to soil physical properties.

  • PDF

Mineral nutrition of field-grown rice plant. -III. Uptake, efficiency and percent translocation of N.P.K. and Si at various yield classes (포장재배수도(圃場栽培水稻)의 무기영양(無機營養) -III 수량등급별(收量等級別) 양분(養分)(N. P. K Si) 흡수량(吸收量), 양분효율(養分効率) 및 전이율(轉移率))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.2
    • /
    • pp.119-125
    • /
    • 1974
  • Uptake amount, percent translocation to grain and grain yield efficiency of N. P. K. Si were investigated with N. P. K simple trials (countrywide, 1967~69) and other nitrogen fertiltzer field trials in relation to yield class. 1) Uptake rate with yield increase were similar in all nutrients but silica showed greater yearly variation. 2) In N. P. K simple trials showing very low nitrogen efficiency(46kg grain/ nitrogen uptake kg) it and percent translocation increased with yield increase. 3) Nitrogen efficiency deacreased with the increase of nitrogen uptake and the decreasing rate depends greatly on fertilizer forms and variety. Nitrogen efficiency was greater in sandy loam where yield was higher than in clay loam. 4) Nitrogen efficiency positively correlated with percent translocation. 5) In high yielding fields yield was attributed only to the increase of nitrogen uptake, keeping efficiency around 50. 6) Major factor for high yield is considered as the increase of nitrogen efficiency rather than nitrogen uptake. 7) Phosphorus efficiency in N. P. K. simple trials was considerably low, suggesting too much uptake due to soil reduction.

  • PDF

Assessment of Performances of Low Impact Development (LID) Facilities with Vegetation (식생이 조성된 LID 시설의 효율 평가)

  • Hong, Jung Sun;Kim, Lee-Hyung
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.2
    • /
    • pp.100-109
    • /
    • 2016
  • Low impact development (LID) facilities are established for the purpose of restoring the natural hydrologic cycle as well as the removal of pollutants from stormwater runoff. Improved efficiency of LID facilities can be obtained through the optimized interaction of their major components (i.e., plant, soil, filter media, microorganisms, etc.). Therefore, this study was performed to evaluate the performances of LID facilities in terms of runoff and pollutant reduction and also to provide an optimal maintenance method. The monitoring was conducted on four LID technologies (e.g., bioretention, small wetlands, rain garden and tree box filter). The optimal SA/CA (facility surface area / catchment area) ratio for runoff reduction greater than 40% is determined to be 1 - 5%. Since runoff reduction affects the pollutant removal efficiency in LID facilities, SA/CA ratio is derived as an important factor in designing LID facilities. The LID facilities that are found to be effective in reducing stormwater runoff are in the following order: rain garden > tree box filter > bioretention> small wetland. Meanwhile, in terms of removal of particulate matter (TSS), the effectiveness of the facilities are in the following order: rain garden > tree box filter > small wetland > bioretention; rain gardens > tree box filter > bioretention > small wetland were determined for the removal of organic matter (COD, TOC), nutrients (TN, TP) and heavy metals (Cu, Pb, Cd, Zn). These results can be used as an important material for the design of LID facilities in runoff volume and pollutant reduction.