Browse > Article
http://dx.doi.org/10.5010/JPB.2020.47.4.261

Current status of comparative compositional analysis for GM crop biosafety assessment  

Kim, Eun-Ha (Biosafety Division, National Institute of Agricultural Sciences)
Oh, Seon-Woo (R&D Coordination Division, Rural Development Administration)
Lee, Sang-Gu (Biosafety Division, National Institute of Agricultural Sciences)
Lee, Sung-Kon (Biosafety Division, National Institute of Agricultural Sciences)
Ryu, Tae-Hun (Biosafety Division, National Institute of Agricultural Sciences)
Publication Information
Journal of Plant Biotechnology / v.47, no.4, 2020 , pp. 261-272 More about this Journal
Abstract
Approvals for cultivation and import of genetically modified (GM) crops have dramatically increased around the world. Comparative compositional studies are an important aspect of safety assessments of products from GM crops and are based on substantial equivalence. Compositional analyses focus on determining similarities and differences between the compositions of the GM crops and their conventional counterparts, and thereby assessing the compositional equivalence of GM crops and their conventional comparators. The analytes, such as major constituents, key nutrients, and antinutrients, are generally determined on a crop-specific basis according to the OECD consensus document. The use of standard methods throughout the processes, such as selection of comparators, field trials, analytical methods, and statistical data analysis, is crucial. In this study, we showed the general framework of compositional studies. Literature for compositional studies of GM crops conducted abroad and in Korea was reviewed to obtain information about analytes, conventional counterparts, cultivation year, location, and statistical methods. The studies conducted abroad assessed for commercial release of GM crops such as soybean, maize, and cotton, while domestic studies were mainly performed for research in rice. In addition, we suggested a guidance for conventional comparators and field trials applicable to the domestic situation.
Keywords
GMO; Biosafety; Substantial equivalence; Nutrient composition;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Hong B, Fisher TL, Sult TS, Maxwell CA, Mickelson JA, Kishino H, Locke MEH (2014) Model-based tolerance intervals derived from cumulative historical composition data: application for substantial equivalence assessment of a genetically modified crop. J Agric Food Chem 62:9916-9926
2 Park H, Lee S, Jeong H, Cho S, Chun H, Back O, Kim D, Lillehoj HS (2006) The nutrient composition of the herbicide-tolerant green pepper is equivalent to that of the conventional green pepper. Nutr Res 26:546-548
3 Park SH, Cho JI, Kim YS, Kim SM, Lim SM, Lee GS, Park SC (2018) National program for developing biotech crops in Korea. Plant Breed Biotech 6:171-176
4 Park SY, Kim JK, Jang JS, Lee SY, Oh S, Lee SM, Yang CI, Yeo Y (2015) Comparative analysis of nutritional composition between the disease-resistant rice variety OsCK1 and conventional comparators. Food Sci Biotechnol 24:225-231
5 Qin Y, Park SY, Oh SW, Lim MH, Shin KS, Cho HS, Lee SK, Woo HJ (2017) Nutritional composition analysis for beta-carotene-enhanced transgenic soybeans (Glycine max L.). Appl Biol Chem 60:299-309
6 Qin F, Kang L, Guo L, Lin J, Song J, Zhao Y (2011) Composition of transgenic soybean seeds with higher -linolenic acid content is equivalent to that of conventional control. J Agric Food Chem 60:2200-2204
7 Sottosanto J, Andre C, Arias DI, Bhatti M, Breazeale S, Fu H, Klucinec J. Lassen A, Lipscomb EA, Martin C, Moore CR, Olson AL, Roberts DW, Senger T, Settlage S, Wandelt C, Wenderoth I, Wu P, Wyrick MK (2018) Petition for the determination of nonregulatory status for EPA+DHA canola event LBFLFK. https://www.aphis.usda.gov/brs/aphisdocs/17_32101p.pdf
8 Codex Alimentarius (2003) Guideline for the conduct of food safety assessment of foods derived from recombinant-DNA plants; CAC/GL45-2003
9 Cho JI, Park SH, Lee GS, Kim SM, Kim YS, Park SC (2020) Current status of GM crop development and commercialization. Korean J Breed Sci 52:40-48
10 Christ B, Pluskal T, Aubry S, Weng JK (2018) Contribution of untargeted metabolomics for future assessment of biotech crops. Trends Plant Sci 23:1047-1056
11 EFSA (2010) Panel on genetically modified organisms (GMO). Scientific opinion on statistical considerations for the safety evaluation of GMOs. EFSA J 8:1250
12 Xin L, Xiaoyun H, Yunbo L, Guoying X, Xianbion J, Kunlun H (2008) Comparative analysis of nutritional composition between herbicide-tolerant rice with bar gene and its non-transgenic counterpart. J Food Compost Anal 21:535-539
13 National Research Council (2004) Safety of genetically engineered food approaches to assessing unintended health effects: Framework, Findings, and Recommendations (Washington, DC: The National Academies Press) pp175-187
14 OECD consensus document on compositional considerations. oecd.org/chemicalsafety/biotrack/consensus-document-for-work-on-safety-novel-and foods-feeds-plants. htm
15 Oh SW, Park SY, Lee SM, Oh SD, Cho HS, Park SK, Lee HJ, Kim HY, Yeo YS (2016) Multivariate analysis for the safety assessment of genetically modified rices in the anti-nutrients and phenolic compounds. Int J Food Sci Technol 51:765-776
16 OECD (1993) Safety evaluation of foods derived by modern biotechnology; Concepts and Principles; Organization of Economic Cooperation and Development (OECD): Paris, France
17 Oh SW, Park SY, Yeo Y, Park SK, Kim HY (2015) Comparative analysis of genetically modified brown rice with conventional rice varieties for the safety assessment. Int J Food Sci Technol 50:1244-1254
18 Swamy BPM, Samia M, Boncodin R, Marundan S, Rebong DB, Ordonio RL, Miranda RT, Rebong ATO, Alibuyog AY, Adeva CC, Reinke R, MacKenzie DJ (2019) Compositional analysis of genetically engineered GR2E "Golden Rice" in comparison to that of conventional rice. J Agric Food Chem 67:7986-7994
19 Taylor M, Bickel A. Mannion R, Bell E, Harrigan GG (2017) Dicamba-tolerant soybeans (Glycine max L.) MON 87708 and MON 87708 × MON 89788 are compositionally equivalent to conventional soybean. J Agric Food Chem 65:8037-8045
20 Lee SY, Park SY, Shin KS, Lee JH, Lim MH, Lee SM, Oh SW, Jeong EG, Yeo Y (2014) Analysis of key nutrients and anti-nutrients in insect-resistant transgenic rice. Korean J Breed Sci 46:400-407
21 Lee SW, Kim YH (2020) Scientific considerations for the biosafety of the off-target effects of gene editing crops. J Plant Biotechnol 47:185-193
22 Ministry of Food and Drug Safety (MFDS) (2015) Guidance for risk assessment of foods, ect. from genetically modified plants III (Nutrition). pp 1-46
23 Mesnage R, Agapito-Tenfen SZ, Vilperte V, Renney G, Ward M, Seralini G-E, Nodari RO, Antoniou MN (2016) An integrated multi-omics analysis of the NK603 Roundup-tolerant GM maize reveals metabolism disturbances caused by the transformation process. Sci Rep 6:37855
24 Ministry of Food and Drug Safety (MFDS) (2018) Regulation for risk assessment of foods, ect. From genetically modified food, etc. MFDS notification 2018-6
25 MacKenzie DJ (2016) Provitamin A biofortified rice event GR2E. foodstandards.gov.au/code/applications/Documents/A1138%20Application_Redacted.pdf
26 Anderson JA, Hong B, Moellring E, TeRonde S, Walker C, Wang Y, Maxwell C (2019) Composition of forage and grain from genetically modified DP202216 maize is equivalent to nonmodified conventional maize (Zea mays L.). GM Crops & Food 10:77-89
27 Brune PD, Culler AH, Ridley WP, Waler K (2013) Safety of GM crops: Compositional analysis. J Agric Food Chem 61:8243-8247
28 Ministry of Food and Drug Safety (MFDS) (2020) Notification of the Transboundary Movement, ETC. of Living Modified Organisms ACT 2020-12(2020.2.25.)
29 Nam KH, Park KW, Han SM, Kim SW, Lee JH, Kim CG (2016) Compositional analysis of protoporphyrinogen oxidaseinhibiting herbicide-tolerant rice and conventional rice. Int J Food Sci Technol 51:1010-1017
30 Obert RB, Shillito RD, De Beuckeleer M, Mitten DH (2005) Rice (Oryza sativa L.) Containing the bar gene Is compositionally equivalent to the nontransgenic counterpart. J Agric Food Chem 53:1457-1465
31 Lee SH, Park HJ, Cho SM, Chun HK, Kim DH, Ryu TH, Cho MC (2004) Comparison of major nutrients and mineral contents in genetically modified herbicide-tolerant red pepper and its parental cultivars. Food Sci Biotechnol 13:830-833
32 Kang YS (2019) Safety evaluation and approval status of genetically modified foods in Korea. Food Sci Ind 52:130-139
33 Kim MS, Baek SA, Park SY, Baek SH, Lee SM, Ha SH, Lee YT, Choi J, Im KH, Kim JK (2016) Comparison of the grain composition in resveratrol-enriched and glufosinate-tolerant rice (Oryza sativa) to conventional rice using univariate and multivariate analysis. J Food Compost Anal 52:58-67
34 Kuiper HA, Kleter GA, Noteborn HPJM, Kok EJ (2001) Assessment of the food safety issues related to genetically modified foods. Plant J 27:503-528
35 Herman RA, Storer NP, Phillips AM, Prochaska LM, Windels P (2007) Compositional assessment of event DAS-59122-7 maize using substantial equivalence. Regul Toxicol Pharmacol 47:37-47
36 ISAAA Brief 53 (2018) Global status of commercialized biotech/GM crops in 2017
37 Nam KH, Kim DY, Shin HJ, An JH, Pack IS, Park JH, Jeong SC, Kim HB, Kim CG (2014) Drought stress-induced compositional changes in tolerant transgenic rice and its wild type. Food Chem 153:145-150
38 Harrigan GG, Ridley WP, Miller KD, Sorbet R, Riordan SG, Nemeth MA, Reeves W, Pester TA (2009) The forage and grain of MON87460, a drought tolerant corn hybrid, are compositionally equivalent to that of conventional corn. J Agric Food Chem 57:9754-9763
39 Herman RA, Fast BJ, Johnson TY, Sabbatini J, Rudgers GW (2013) Compositional safety of herbicide-tolerant DAS-819107 cotton. J Agric Food Chem 61:11683-11692
40 Herman RA, Phillips AM, Lepping MD, Sabbatini J (2011) The composition of transgenic DAS-68416-4 soybean seed and forage was compared with those of non-transgenic soybean. J Agric Food Chem 1:1-16
41 Herman RA, Price WD (2013) Unintended compositional changes in genetically modified (GM) crops: 20 years of research. J Agric Food Chem 61:11695-11701
42 Herman RA, Fast BJ, Mathesius C, Delaney B (2018) Isoline use in crop composition studies with genetically modified crops under EFSA guidance-short communication. Regul Toxicol Pharmacol 95:204-206
43 Harrigan GG, Ridley WP, Riordan SG, Nemeth MA, Sorbet R, Trujillo WA, Breeze ML, Schneider RW (2007) Chemical composition of glyphosate-tolerant soybean 40-3-2 grown in Europe remains equivalent with that of conventional soybean (Glycine max L.). J Agric Food Chem 55:6160-6168
44 Gayen D, Sarkar SN, Datta SK, Datta K (2013) Comparative analysis of nutritional compositions of transgenic high iron rice with its non-transgenic counterpart. Food Chem 138:835-840
45 EFSA (2011b) Panel on genetically modified organisms (GMO). Scientific opinion on guidance for risk assessment of food and feed from genetically modified plants. EFSA J 9: 2150
46 ILSI (2004) Nutritional and safety assessments of foods and feeds nutritionally improved through biotechnology. Comprehensive reviews in food science and food safety, prepared by the ILSI Europe Novel Food Task Force. Vol. 3, Issue 2, pp 35-104
47 Kim JK, Park SY, Ha SH, Lee SM, Im SH, Kim HJ, Ko HS, Oh SD, Park JS, Suh SC (2012) Compositional assessment of carotenoidbiofortified rice using substantial equivalence. Afr J Biotechnol 11:9330-9335
48 Kok EJ, Kuiper HA (2003) Comparative safety assessment for biotech crops. Trends Biotechnol 21:439-444
49 Kusano M, Redestig H, Hirai T, Oikawa A, Matsuda F, Fukushima A, Arita M, Watanabe S, Yano M, Hiwasa-Tanase K, Ezura H, Saito K (2011) Covering chemical diversity of geneticallymodified tomatoes using metabolomics for objective substantial equivalence assessment. Plos One 6:e16989
50 Lassoued R, Macall DM, Smyth SJ, Phillips PW, Hesseln H (2019) Risk and safety consideration of genome edited crops: expert opinion. Curr Res Biotechnol 1:11-21
51 Clarke JD, Alexander DC, Ward DP, Ryals JA, Mitchell MW, Wulff JE, Guo L (2013) Assessment of genetically modified soybean in relation to natural variation in the soybean seed metabolome. Sci Rep 3:3082
52 Lee YT, Lee HM, Ahn BO, Cho HS, Suh SC (2013) Nutritional composition of drought-tolerant transgenci rice. J Korean Soc Food Sci Nutr 42:730-735
53 Kim EH, Lee SK, Park SY, Lee SG, Oh SW (2018) Development of the conventional crop composition database for new genetically engineered crop safety assessment. J Plant Biotechnol 45:289-298
54 Cho DW, Oh JP, Park KW, Lee DJ, Chung KH (2010) Comparison of the plant characteristics and nutritional components between GM and non-GM Chinese cabbages grown in the central and northern parts of Korea. Kor J Hort Sci Technol 28:836-844
55 EFSA (2011a) Panel on genetically modified organisms (GMO). Guidance document on selection of comparators for the risk assessment of GM plants. EFSA J 9:2149
56 Fraser PD, Aharoni A, Hal RD, Huang S, Glovannoni JJ, Sonnewald U, Fernie AR (2020) Metabolomics should be deployed in the identification and characterization of gene-edited crops. Plant J doi: 10.1111/tpj.14679   DOI