• 제목/요약/키워드: plant growth promoting potential

검색결과 109건 처리시간 0.025초

Biocontrol of Fusarium Crown and Root Rot and Promotion of Growth of Tomato by Paenibacillus Strains Isolated from Soil

  • Xu, Sheng Jun;Kim, Byung Sup
    • Mycobiology
    • /
    • 제42권2호
    • /
    • pp.158-166
    • /
    • 2014
  • In this study, bacterial strains were isolated from soils from 30 locations of Samcheok, Gangwon province. Of the isolated strains, seven showed potential plant growth promoting and antagonistic activities. Based on cultural and morphological characterization, and 16S rRNA gene sequencing, these strains were identified as Paenibacillus species. All seven strains produced ammonia, cellulase, hydrocyanic acid, indole-3-acetic acid, protease, phosphatase, and siderophores. They also inhibited the mycelial growth of Fusarium oxysporum f. sp. radicis-lycopersici in vitro. The seven Paenibacillus strains enhanced a range of growth parameters in tomato plants under greenhouse conditions, in comparison with non-inoculated control plants. Notably, treatment of tomato plants with one identified strain, P. polymyxa SC09-21, resulted in 80.0% suppression of fusarium crown and root rot under greenhouse conditions. The plant growth promoting and antifungal activity of P. polymyxa SC09-21 identified in this study highlight its potential suitability as a bioinoculant.

Biological Inoculant of Salt-Tolerant Bacteria for Plant Growth Stimulation under Different Saline Soil Conditions

  • Wang, Ru;Wang, Chen;Feng, Qing;Liou, Rey-May;Lin, Ying-Feng
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권3호
    • /
    • pp.398-407
    • /
    • 2021
  • Using salt-tolerant bacteria to protect plants from salt stress is a promising microbiological treatment strategy for saline-alkali soil improvement. Here, we conducted research on the growth-promoting effect of Brevibacterium frigoritolerans on wheat under salt stress, which has rarely been addressed before. The synergistic effect of B. frigoritolerans combined with representative salt-tolerant bacteria Bacillus velezensis and Bacillus thuringiensis to promote the development of wheat under salt stress was also further studied. Our approach involved two steps: investigation of the plant growth-promoting traits of each strain at six salt stress levels (0, 2, 4, 6, 8, and 10%); examination of the effects of the strains (single or in combination) inoculated on wheat in different salt stress conditions (0, 50, 100, 200, 300, and 400 mM). The experiment of plant growth-promoting traits indicated that among three strains, B. frigoritolerans had the most potential for promoting wheat parameters. In single-strain inoculation, B. frigoritolerans showed the best performance of plant growth promotion. Moreover, a pot experiment proved that the plant growth-promoting potential of co-inoculation with three strains on wheat is better than single-strain inoculation under salt stress condition. Up to now, this is the first report suggesting that B. frigoritolerans has the potential to promote wheat growth under salt stress, especially combined with B. velezensis and B. thuringiensis.

Practical significance of plant growth-promoting rhizobacteria in sustainable agriculture: a review

  • Subhashini Wijeysingha;Buddhi C. Walpola;Yun-Gu Kang;Min-Ho Yoon;Taek-Keun Oh
    • 농업과학연구
    • /
    • 제50권4호
    • /
    • pp.759-771
    • /
    • 2023
  • Plant growth-promoting rhizobacteria (PGPR) are naturally occurring bacteria that intensively colonize plant roots and are crucial in promoting the crop growth. These beneficial microorganisms have garnered considerable attention as potential bio-inoculants for sustainable agriculture. PGPR directly interacts with plants by providing essential nutrients through nitrogen fixation and phosphate solubilization and accelerating the accessibility of other trace elements such as Cu, Zn, and Fe. Additionally, they produce plant growth-promoting phytohormones, such as indole acetic acids (IAA), indole butyric acids (IBA), gibberellins, and cytokinins.PGPR interacts with plants indirectly by protecting them from diseases and infections by producing antibiotics, siderophores, hydrogen cyanide, and fungal cell wall-degrading enzymes such as glucanases, chitinases, and proteases. Furthermore, PGPR protects plants against abiotic stresses such as drought and salinity by producing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and modulating plant stress markers. Bacteria belonging to genera such as Bacillus, Pseudomonas, Burkholderia, Pantoa, and Enterobacter exhibit multiple plant growth-promoting traits, that can enhance plant growth directly, indirectly, or through synergetic effects. This comprehensive review emphasizes how PGPR influences plant growth promotion and presents promising prospects for its application in sustainable agriculture.

Plant Growth-Promoting Potential of Endophytic Bacteria Isolated from Roots of Coastal Sand Dune Plants

  • Shin, Dong-Sung;Park, Myung-Soo;Jung, Se-Ra;Lee, Myoung-Sook;Lee, Kang-Hyun;Bae, Kyung-Sook;Kim, Seung-Bum
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권8호
    • /
    • pp.1361-1368
    • /
    • 2007
  • Endophytic bacteria associated with the roots of coastal sand dune plants were isolated, taxonomically characterized, and tested for their plant growth-promoting activities. Ninety-one endophytic bacterial isolates were collected and assigned to 17 different genera of 6 major bacterial phyla based on partial 16S rDNA sequence analyses. Gammaproteobacteria represented the majority of the isolates (65.9%), and members of Pseudomonas constituted 49.5% of the total isolates. When testing for antagonism towards plant pathogenic fungi, 25 strains were antagonistic towards Rhizoctonia solani, 57 strains were antagonistic towards Pythium ultimum, 53 strains were antagonistic towards Fusarium oxysporum, and 41 strains were antagonistic towards Botrytis cinerea. Seven strains were shown to produce indole acetic acid (IAA), 33 to produce siderophores, 23 to produce protease, 37 to produce pectinase, and 38 to produce chitinase. The broadest spectra of activities were observed among the Pseudomonas strains, indicating outstanding plant growth-promoting potential. The isolates from C. kobomugi and M. sibirica also exhibited good plant growth-promoting potential. The correlations among individual plant growth-promoting activities were examined using phi coefficients, and the resulting data indicated that the production of protease, pectinase, chitinase, and siderophores was highly related.

Application of Bacterial Endophytes to Control Bacterial Leaf Blight Disease and Promote Rice Growth

  • Ooi, Ying Shing;Nor, Nik M.I. Mohamed;Furusawa, Go;Tharek, Munirah;Ghazali, Amir H.
    • The Plant Pathology Journal
    • /
    • 제38권5호
    • /
    • pp.490-502
    • /
    • 2022
  • Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight (BLB) disease in rice (Oryza sativa L.) and it is among the most destructive pathogen responsible for severe yield losses. Potential bacterial biocontrol agents (BCAs) with plant growth promotion (PGP) abilities can be applied to better manage the BLB disease and increase crop yield, compared to current conventional practices. Thus, this study aimed to isolate, screen, and identify potential BCAs with PGP abilities. Isolation of the BCAs was performed from internal plant tissues and rhizosphere soil of healthy and Xoo-infected rice. A total of 18 bacterial strains were successfully screened for in vitro antagonistic ability against Xoo, siderophore production and PGP potentials. Among the bacterial strains, 3 endophytes, Bacillus sp. strain USML8, Bacillus sp. strain USML9, and Bacillus sp. strain USMR1 which were isolated from diseased plants harbored the BCA traits and significantly reduced leaf blight severity of rice. Simultaneously, the endophytic BCAs also possessed plant growth promoting traits and were able to enhance rice growth. Application of the selected endophytes (BCAs-PGP) at the early growth stage of rice exhibited potential in suppressing BLB disease and promoting rice growth.

Determinants of Plant Growth-promoting Ochrobactrum lupini KUDC1013 Involved in Induction of Systemic Resistance against Pectobacterium carotovorum subsp. carotovorum in Tobacco Leaves

  • Sumayo, Marilyn;Hahm, Mi-Seon;Ghim, Sa-Youl
    • The Plant Pathology Journal
    • /
    • 제29권2호
    • /
    • pp.174-181
    • /
    • 2013
  • The plant growth-promoting rhizobacterium Ochrobactrum lupini KUDC1013 elicited induced systemic resistance (ISR) in tobacco against soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum. We investigated of its factors involved in ISR elicitation. To characterize the ISR determinants, KUDC1013 cell suspension, heat-treated cells, supernatant from a culture medium, crude bacterial lipopolysaccharide (LPS) and flagella were tested for their ISR activities. Both LPS and flagella from KUDC1013 were effective in ISR elicitation. Crude cell free supernatant elicited ISR and factors with the highest ISR activity were retained in the n-butanol fraction. Analysis of the ISR-active fraction revealed the metabolites, phenylacetic acid (PAA), 1-hexadecene and linoleic acid (LA), as elicitors of ISR. Treatment of tobacco with these compounds significantly decreased the soft rot disease symptoms. This is the first report on the ISR determinants by plant growth-promoting rhizobacteria (PGPR) KUDC1013 and identifying PAA, 1-hexadecene and LA as ISR-related compounds. This study shows that KUDC1013 has a great potential as biological control agent because of its multiple factors involved in induction of systemic resistance against phytopathogens.

Influence of the plant growth promoting Rhizobium panacihumi on aluminum resistance in Panax ginseng

  • Kang, Jong-Pyo;Huo, Yue;Yang, Dong-Uk;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제45권3호
    • /
    • pp.442-449
    • /
    • 2021
  • Background: Panax ginseng is an important crop in Asian countries given its pharmaceutical uses. It is usually harvested after 4-6 years of cultivation. However, various abiotic stresses have led to its quality reduction. One of the stress causes is high content of heavy metal in ginseng cultivation area. Plant growth-promoting rhizobacteria (PGPR) can play a role in healthy growth of plants. It has been considered as a new trend for supporting the growth of many crops in heavy metal occupied areas, such as Aluminum (Al). Methods: In vitro screening of the plant growth promoting activities of five tested strains were detected. Surface-disinfected 2-year-old ginseng seedlings were dipping in Rhizobium panacihumi DCY116T suspensions for 15 min and cultured in pots for investigating Al resistance of P. ginseng. The harvesting was carried out 10 days after Al treatment. We then examined H2O2, proline, total soluble sugar, and total phenolic contents. We also checked the expressions of related genes (PgCAT, PgAPX, and PgP5CS) of reactive oxygen species scavenging response and pyrroline-5-carboxylate synthetase by reverse transcription polymerase chain reaction (RT-PCR) method. Results: Among five tested strains isolated from ginseng-cultivated soil, R. panacihumi DCY116T was chosen as the potential PGPR candidate for further study. Ginseng seedlings treated with R. panacihumi DCY116T produced higher biomass, proline, total phenolic, total soluble sugar contents, and related gene expressions but decreased H2O2 level than nonbacterized Al-stressed seedlings. Conclusion: R. panacihumi DCY116T can be used as potential PGPR and "plant strengthener" for future cultivation of ginseng or other crops/plants that are grown in regions with heavy metal exposure.

Exploring the role and characterization of Burkholderia cepacia CD2: a promising eco-friendly microbial fertilizer isolated from long-term chemical fertilizer-free soil

  • HyunWoo Son;Justina Klingaite;Sihyun Park;Jae-Ho Shin
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.394-403
    • /
    • 2023
  • 지속 가능하고 친환경적인 농업 관행을 추구하기 위해 우리는 40년이 넘는 장기간 동안 화학 비료를 사용하지 않은 토양에 서식하는 근권 박테리아에 대한 광범위한 연구를 수행하였다. 이번 조사를 통해 식물생장촉진 근권박테리아 총 80종을 분리하고 이들의 식물생장 증진 가능성을 평가했다. 이러한 분리균중에서 Burkholderia cepacia CD2는 가장 우수한 식물 성장촉진 활성과 생장능을 나타내어 추가 분석을 위한 최적의 후보균주로 선정되었다. Burkholderia cepacia CD2는 인 가용화 능력, 사이드로포어 생산, 탈질화 능력, 아질산 이온 활용능력 및 요소분해효소 활성을 포함하여 식물 성장에 도움이 되는 다양한 유익한 특성을 나타내었다. 이러한 특성은 식물의 성장과 발달에 긍정적인 영향을 미치는 것으로 잘 알려져 있다. 균주의 분류학적 분류를 검증하기 위해 16S rRNA 유전자 서열분석을 통해 Burkholderia 속 내 위치를 확인하여 계통발생 관계에 대한 추가 통찰력을 제공하였다. 식물 생장 촉진 특성의 기본 메커니즘을 더 깊이 조사하기 위해 우리는 CD2에서 식물 생장촉진과 관련된 특정 유전자의 존재를 확인하려고 하였다. 이를 달성하기 위해 옥스포드 나노포어를 활용하여 전장 유전체 시퀀싱을 수행하였다. CD2 게놈에 대한 전장유전체 분석을 통해 식물 생장 개선에 중추적 요인으로 생각되는 하위 시스템 기능을 확인하였다. 이러한 발견을 바탕으로 Burkholderia cepacia CD2는 미생물 비료로 작용하여 화학 비료에 대한 지속 가능한 대안을 제공할 수 있는 잠재력을 가지고 있다는 결론을 내릴수 있다.

항진균 활성, 식물 생장촉진 활성, 미네랄 가용화능을 가진 생물학적 제제로서 잠재적 식물 생장촉진 근권세균의 특성조사 (Characterization of Potential Plant Growth-promoting Rhizobacteria as Biological Agents with Antifungal Activity, Plant Growth-promoting Activity, and Mineral Solubilizing Activity)

  • 이송민;김지윤;김희숙;오가윤;이광희;이상현;장정수
    • 생명과학회지
    • /
    • 제31권7호
    • /
    • pp.641-653
    • /
    • 2021
  • 본 연구에서는 근권토양으로부터 18종의 세균을 순수분리하고, 이들의 식물 병원성 진균 생육억제 활성, 식물생장촉진 활성 및 미네랄 가용화능을 평가하였다. Bacillus 속과 Pseudomonas 속 분리균주의 항진균 활성을 통해 생물학적 방제제로서의 가능성을 확인할 수 있었으며, 이는 식물 병원성 진균의 세포벽에 작용하는 여러 가수분해효소 활성과 siderophore 생성능 등에 기인된 것으로 판단된다. 또한 대부분의 분리균주가 aminocyclopropane-1-carboxylate deaminase 생성능, indole-3-acetic acid 생성능 및 질소 고정능을 갖고 있는 것으로 나타났으며, 이러한 특성은 식물이 흔히 노출될 수 있는 환경 스트레스 조건 하에서 스트레스 에틸렌의 농도를 감소시킴으로써 뿌리 발달 및 성장, 그리고 작물의 생산성에 긍정적인 영향을 줄 것으로 판단된다. 그리고 분리균주의 인산, 규소, 탄산칼슘, 아연 가용화능 등을 확인한 결과, 일부 분리균주들의 미네랄 가용화능을 확인하였으며, 이들 분리균주를 식물 생장 시에 접종한다면 식물 생장에 필요한 영양분을 식물이 흡수할 수 있는 이용가능한 형태로 변환시켜 식물의 생장에 도움을 줄 수 있을 것으로 기대된다. 이러한 항진균 활성, 식물생장촉진 활성 및 미네랄 가용화능의 결과를 통해 분리균주 18종의 biocontrol agent로서의 이용가능성을 제시하고자 한다.

Plant Growth-promoting Activity of Acremonium strictum MJN1 Isolated from Roots of Panax ginseng

  • Lim, Hyung-Bum;Chung, Yang-Jo;Bae, Ju-Yun;Kim, Dong-Jin;Kwon, Hyung-Jin;Lee, In Hyung;Chung, Byung-Chul;Lee, Woong-Sang;Suh, Joo-Won
    • Journal of Applied Biological Chemistry
    • /
    • 제43권2호
    • /
    • pp.104-108
    • /
    • 2000
  • The plant growth-promoting activity of Acremonium strictum MJN1 isolated from roots of Panox ginseng was explored. The myceliaI extract of A. strictum MJN1 enhanced the rice seedling growth by 14.5 and 9.0% in the dried weight of shoots and roots, and the growth of red pepper by 54 and 85% in the top length and the dried weight in pot experiments, respectively. The plant growth-promoting substances in the myceliaI extract of Acremonium strictum MJN1 were identified as D-adenosine and glycerol. Both commercial D-adenosine and glycerol also promoted significantly the rice seedling growth but, unlike the mycelial extract of A. strictum MJN1, hardly affected the yields of plants grown in pots or field. Therefore, it is possible that other plant growth-promoting substances are produced by A. strictum MJN1. However, this study shows that A. strictum MJN1 has a great potential as a biofertilizer.

  • PDF