• Title/Summary/Keyword: plant growth promoting activities

Search Result 89, Processing Time 0.038 seconds

Enhancing Resistance of Red Pepper to Phytophthora Blight Diseases by Seed Treatment with Plant Growth Promoting Rhizobacteria

  • M. Rajkumar;Lee, Kui-Jae;Lee, Wang-Hyu
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.95.1-95
    • /
    • 2003
  • Plant growth promoting rhizobacteria (PGPR) have been shown to suppress phytopthora blight. This suppression has been related to both microbial antagonism and induced resistance. The PGPR isolates were screened by dual culture plate method and most of the isolates were showed varying levels of antagonism. Among the PGPR isolates pyoverdin, pyochelin and salicylic acid producing strains showed the maximum inhibition of mycelial growth of Phytopkhora capsici and increased plant growth promotion in red pepper. PGPR isolates further analysed for its ability to induce production of defence related enzymes and chemicals. The activities such as Phenyle alanin ammonia Iyase (PAL), Peroxidase (PO), Polyphenol oxidase (PPO) and accumulation of phenolics were observed in PGPR pretreated red pepper plants challenged with Phytopkhora capsici. The present study shows that an addition of direct antagonism and plant growth promotion, induction of defense related enzymes involved to enhance resistance against invasion of P. capsici in red pepper.

  • PDF

Biological Control Activities of Plant Growth Promoting Rhizobacteria from Organic and Nonorganic Rice Fields against Rice Sheath Blight Pathogen (Rhizoctonia solani Kühn)

  • Harvianti, Yuniar;Kasiamdari, Rina Sri
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.374-383
    • /
    • 2021
  • Rhizoctonia solani is one of the major pathogens that cause sheath blight disease in rice. Sheath blight is one of the most difficult diseases to control. Biological control (with the use of rhizobacteria) is one of the ways to control this disease. Plant Growth Promoting Rhizobacteria (PGPR) is a rhizosphere bacterium that can be used to enhance plant growth. The composition of the rhizobacteria in organic and nonorganic soil is affected by the chemical characteristics of the soil - which influences plant physiology and root exudation patterns. This study aimed to obtain a species of rhizobacteria which shows PGPR activity, from organic and nonorganic rice fields and test their capability to suppress R. solani growth. Out of 23 isolates screened for PGPR activity, the following isolates showed high PGPR activity and were selected for in vitro antagonistic activity testing against R. solani: ISO6, ISO11, ISO15, ISN2, ISN3, and ISN7, The six isolates produced 43,42-75,23 ppm of IAA, possessed phosphorus solubilization capability, and chitinase-producing activity. ISO6 (54.88%) and ISN7 (83.33%) displayed high inhibition capacities against R. solani, in vitro. ISO6 and ISN7 inhibited the growth of R. solani lesions on rice leaves by 89% and 100% (without lesion), respectively, after 7 days of incubation. Analysis of their 16S rRNA sequences revealed that the ISO6 isolate was Citrobacter freundii and ISN7 isolate was Pseudomonas aeruginosa.

Isolation and Identification of Alkali-tolerant Bacteria from Near-Shore Soils in Dokdo Island

  • Namirimu, Teddy;Kim, Jinnam;Zo, Young-Gun
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.105-115
    • /
    • 2019
  • Saline or alkaline condition in soil inhibits growth of most crop plants and limits crop yields in many parts of the world. Augmenting an alkaline soil with alkali-tolerant bacteria capable of promoting plant growth can be a promising approach in expanding fertile agricultural land. Near-shore environments of Dokdo Island, a remote island located in the middle of the East Sea, appear to have patches of seawater-influenced haloalkaline soil that is unsupportive for growth of conventional plants. To exploit metabolic capacities of alkali-tolerant bacteria for promoting plant growth in saline or alkaline soils, we isolated of alkali-tolerant bacteria from near-shore soil samples in Dokdo and investigated properties of the isolates. Alkali-tolerant bacteria were selectively cultivated by inoculating suspended and diluted soil samples on a plate medium adjusted to pH 10. Fifty colonies were identified based on their $GTG_5$-PCR genomic fingerprints and 16S rRNA gene sequences. Most isolates were affiliated to alkali-tolerant and/or halotolerant genera or species of the phyla Firmicutes (68%), Proteobacteria (30%) and Actinobacteria (2%). Unlike the typical soil bacterial flora in the island, alkali-tolerant isolates belonged to only certain taxa of terrestrial origin under the three phyla, which have traits of plant growth promoting activities including detoxification, phytohormone production, disease/pest control, nitrogen-fixation, phosphate solubilization or siderophore production. However, Firmicutes of marine origin generally dominated the alkali-tolerant community. Results of this study suggest that haloalkaline environments like Dokdo shore soils are important sources for plant growth promoting bacteria that can be employed in bio-augmentation of vegetation-poor alkaline soils.

INDUCTION OF SYSTEMIC RESISTANCE IN CUCUMBER AGAINST ANTHRACNOSE BY PLANT GROWTH PROMOTING FUNGI

  • Hyakumachi, Mitsuro
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1997.06a
    • /
    • pp.47-55
    • /
    • 1997
  • Plant growth promoting fungi(PGPF) obtained from zoysiagrass rhizosphere offer dual advantages - induse systemic disease resistance response in cucumber to C. orbiculare infection and cause enhancement of plant growth and increase yield. PGPF protected plants either by colonizing roots or by their metabolites. PGPF offer an advantage by protecting plants for more than 9 weeks and 6 week in the greenhouse and field. PGPF-induced plants limited pathogen spore germination and decreased the number of infection hyphae on the leaf, and increased lignification at places of attempted pathogen infection, thus reducing the pathogen spread. PGPF elicited increased activities of chitinascs, glucanases, peroxidase, polyphenol oxidase, and phenylalanine ammonia lyase to C. orbiculare infection in cucumber plants. The role of PGPF in elevating cucumber defense response to pathogen infection suggests potential application of PGPF as biological control agents.

  • PDF

Induction of Systemic Resistance against Bacterial Leaf Streak Disease and Growth Promotion in Rice Plant by Streptomyces shenzhenesis TKSC3 and Streptomyces sp. SS8

  • Hata, Erneeza Mohd;Yusof, Mohd Termizi;Zulperi, Dzarifah
    • The Plant Pathology Journal
    • /
    • v.37 no.2
    • /
    • pp.173-181
    • /
    • 2021
  • The genus Streptomyces demonstrates enormous promise in promoting plant growth and protecting plants against various pathogens. Single and consortium treatments of two selected Streptomyces strains (Streptomyces shenzhenensis TKSC3 and Streptomyces sp. SS8) were evaluated for their growth-promoting potential on rice, and biocontrol efficiency through induced systemic resistance (ISR) mediation against Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of rice bacterial leaf streak (BLS) disease. Seed bacterization by Streptomyces strains improved seed germination and vigor, relative to the untreated seed. Under greenhouse conditions, seed bacterization with consortium treatment TKSC3 + SS8 increased seed germination, root length, and dry weight by 20%, 23%, and 33%, respectively. Single and consortium Streptomyces treatments also successfully suppressed Xoc infection. The result was consistent with defense-related enzyme quantification wherein single and consortium Streptomyces treatments increased peroxidase (POX), polyphenol oxidase, phenylalanine ammonia-lyase, and β,1-3 glucanase (GLU) accumulation compared to untreated plant. Within all Streptomyces treatments, consortium treatment TKSC3 + SS8 showed the highest disease suppression efficiency (81.02%) and the lowest area under the disease progress curve value (95.79), making it the best to control BLS disease. Consortium treatment TKSC3 + SS8 induced the highest POX and GLU enzyme activities at 114.32 µmol/min/mg protein and 260.32 abs/min/mg protein, respectively, with both enzymes responsible for plant cell wall reinforcement and resistant interaction. Our results revealed that in addition to promoting plant growth, these Streptomyces strains also mediated ISR in rice plants, thereby, ensuring protection from BLS disease.

Identification of Endophytic Bacteria in Panax ginseng Seeds and Their Potential for Plant Growth Promotion (인삼종자로부터 분리된 내생균의 동정과 식물생장 촉진 관련 활성의 평가)

  • Um, Yurry;Kim, Bo Ra;Jeong, Jin Ju;Chung, Chan Moon;Lee, Yi
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.4
    • /
    • pp.306-312
    • /
    • 2014
  • Endophytes are microorganisms that live in the internal tissues of plants without harming the host plants. In this symbiotic relationship, the host plants provide nutrients and shelter to the endophytes, in turn, endophytes can promote the growth of host plants and act as a biological control agents against plant pathogens. Plant-microbe interactions like this are noted for natural methods for sustainable agriculture and environmental conservation. However, in spite of the infinite potential, there are only a few reports on the endophytes present in ginseng. In this study, we isolated and identified the endophytes from Panax ginseng seeds and evaluated the biological activities (IAA production ability, nitrogen fixation ability, phosphate solubilization capacity, siderophore production ability, and antifungal activities) of the endophyte isolates. Eight different endophytes were identified by 16S rRNA sequencing. Most of the endophytes have antibiotic and plant growth promoting (PGP) activities. Particularly, PgSEB5-37E have the highest antibiotic activity, both PgSEB5-37B and PgSEB5-37H have high PGP traits such as an abilities to produce IAA, solubilize phosphate and fix nitrogen. These results indicated that the endophytes from P. ginseng seeds may have applicable value to many industries. In order to use the isolated endophytes, quantitative analysis and field tests are needed to be performed.

Influence of the plant growth promoting Rhizobium panacihumi on aluminum resistance in Panax ginseng

  • Kang, Jong-Pyo;Huo, Yue;Yang, Dong-Uk;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.442-449
    • /
    • 2021
  • Background: Panax ginseng is an important crop in Asian countries given its pharmaceutical uses. It is usually harvested after 4-6 years of cultivation. However, various abiotic stresses have led to its quality reduction. One of the stress causes is high content of heavy metal in ginseng cultivation area. Plant growth-promoting rhizobacteria (PGPR) can play a role in healthy growth of plants. It has been considered as a new trend for supporting the growth of many crops in heavy metal occupied areas, such as Aluminum (Al). Methods: In vitro screening of the plant growth promoting activities of five tested strains were detected. Surface-disinfected 2-year-old ginseng seedlings were dipping in Rhizobium panacihumi DCY116T suspensions for 15 min and cultured in pots for investigating Al resistance of P. ginseng. The harvesting was carried out 10 days after Al treatment. We then examined H2O2, proline, total soluble sugar, and total phenolic contents. We also checked the expressions of related genes (PgCAT, PgAPX, and PgP5CS) of reactive oxygen species scavenging response and pyrroline-5-carboxylate synthetase by reverse transcription polymerase chain reaction (RT-PCR) method. Results: Among five tested strains isolated from ginseng-cultivated soil, R. panacihumi DCY116T was chosen as the potential PGPR candidate for further study. Ginseng seedlings treated with R. panacihumi DCY116T produced higher biomass, proline, total phenolic, total soluble sugar contents, and related gene expressions but decreased H2O2 level than nonbacterized Al-stressed seedlings. Conclusion: R. panacihumi DCY116T can be used as potential PGPR and "plant strengthener" for future cultivation of ginseng or other crops/plants that are grown in regions with heavy metal exposure.

Enhancing Resistance of Red Pepper to Phytophthora Blight Diseases by Seed Treatment with Plant Growth Promoting Rhizobacteria

  • M. Rajkumar;Lee, Kui-Jae;Park, Min-Kyung;Jo, Rae-Yun;Lee, Wang-Hui
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.10b
    • /
    • pp.47-47
    • /
    • 2003
  • Plant growth promoting rhizobacteria (PGPR) have been shown to suppress phytopthora blight. This suppression has been related to both microbial antagonism and induced resistance. The PGPR isolates were screened by dual culture plate method and most of the isolates were showed varyinglevels of antagonism. Among the PGPR isolates pyoverdin, pyochelin and salicylic acid producing strains showed the maximum inhibition of mycelial growth of Phytophthora capsici and increased plant growth promotion in red pepper. PGPR isolatesfurther analysed for its ability to induce production of defence related enzymes and chemicals. The activities such as Phenyle alanin ammonia lyase (PAL), Peroxidase (PO), Polyphenol oxidase (PPO) and accumulation of phenolics were observed in PGPR pretreated red pepper plants challenged with Phytophthora capsici. The present study shows that an addition of direct antagonism and plant growth promotion, induction of defense related enzymes involved to enhance resistance against invasion of P. capsici in red pepper.

  • PDF

Isolation, Root Colonization and Evaluation of Some Plant Growth-promoting Rhizobacteria in Paddy Rice

  • Kang, Ui-Gum;Park, Hyang-Mi;Ko, Jee-Yeon;Lee, Jae-Saeng;Jeon, Weon-Tai;Park, Chang-Young;Park, Ki-Do;Chebotar, Vladimir K.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.3
    • /
    • pp.135-149
    • /
    • 2017
  • In order to obtain promising rice growth-promoting microbial strains that can be used as substitutes for chemical fertilizers, 172 bacterial strains were isolated from rice roots grown in Korean and Russian soils. Out of them, the strains KR076, KR083, KR181 and RRj228 showed plant growth-promoting activities on maize seedlings. Bacillus megaterium KR076 and Bacillus sp. KR083 showed both nitrogen-fixing and plant growth-promoting activities, while Rhizobium sp. KR181 and Pseudomonas sp. RRj228 appeared to support only plant growth-promotion, but not $N_2$ fixation. Especially, RRj228 showed high growth promoting activity at low concentrations. Inoculation studies with KR083 and RRj228 revealed a high affinity to the Japonica rice variety such as Junambyeo than the Korean Tongil type variety such as Arumbyeo. Both KR083 and RRj228 strains showed rhizoplane and/or endophytic colonization in Japonica and Tongil types rice when soaked with the bacterial suspension of $1.1{\times}10^5cfu\;ml^{-1}$ for six and twelve hours. However, the total bacterial cell numbers were higher in the roots of Japonica variety than in the Tongil type. In inoculation trials with Daesanbyeo rice variety, the seedlings inoculated with KR181 and RRj228 at the rate of $2.0{\times}10^6cfu\;ml^{-1}$ showed yield increment of 35% and 33% (p < 0.01), respectively, so that they contributed to the replacement of chemical fertilizer at half doses of N, $P_2O_5$, and $K_2O$ in pots. In Junambyeo rice seedlings, the strain RRj228, when inoculated with a cell suspension of $1.8{\times}10^6cfu\;ml^{-1}$, promoted 3.4% higher yield at 70% dose than at a full dose level of N $110kg\;ha^{-1}$ in field. These results suggest that the rhizobacteria KR181 and RRj228 are prospective strains for enhancing rice performance.

Influence of Commercial Antibiotics on Biocontrol of Soft Rot and Plant Growth Promotion in Chinese Cabbages by Bacillus vallismortis EXTN-1 and BS07M

  • Sang, Mee Kyung;Dutta, Swarnalee;Park, Kyungseok
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.255-260
    • /
    • 2015
  • We investigated influence of three commercial antibiotics viz., oxolinic acid, streptomycin, and validamycin A, on biocontrol and plant growth promoting activities of Bacillus vallismortis EXTN-1 and BS07M in Chinese cabbage. Plants were pre-drenched with these strains followed by antibiotics application at recommended and ten-fold diluted concentration to test the effect on biocontrol ability against soft rot caused by Pectobacterium carotovorum SCC1. The viability of the two biocontrol strains and bacterial pathogen SCC1 was significantly reduced by oxolinic acid and streptomycin in vitro assay, but not by validamycin A. In plant trials, strains EXTN-1 and BS07M controlled soft rot in Chinese cabbage, and there was a significant difference in disease severity when the antibiotics were applied to the plants drenched with the two biocontrol agents. Additional foliar applications of oxolinic acid and streptomycin reduced the disease irrespective of pre-drench treatment of the PGPRs. However, when the plants were pre-drenched with EXTN-1 followed by spray of validamycin A at recommended concentration, soft rot significantly reduced compared to untreated control. Similarly, strains EXTN-1 and BS07M significantly enhanced plant growth, but it did not show synergistic effect with additional spray of antibiotics. Populations of the EXTN-1 or BS07M in the rhizosphere of plants sprayed with antibiotics were significantly affected as compared to control. Taken together, our results suggest that the three antibiotics used for soft rot control in Chinese cabbage could affect bacterial mediated biocontrol and plant growth promoting activities. Therefore, combined treatment of the PGPRs and the commercial antibiotics should be carefully applied to sustain environmental friendly disease management.