• Title/Summary/Keyword: plant growth promoting

Search Result 493, Processing Time 0.028 seconds

Improvement of Biocontrol of Damping-off and Root Rot/Wilt of Faba Bean by Salicylic Acid and Hydrogen Peroxide

  • Abdel-Monaim, Montaser Fawzy
    • Mycobiology
    • /
    • v.41 no.1
    • /
    • pp.47-55
    • /
    • 2013
  • Rhizoctonia solani, Fusarium solani, F. oxysporum, and Macrophomina phaseolina were found to be associated with root rott and wilt symptoms of faba bean plants collected from different fieldes in New Valley governorate, Egypt. All the obtained isolates were able to attack faba bean plants (cv. Giza 40) causing damping-off and root rot/wilt diseases. R. solani isolates 2 and 5, F. solani isolate 8, F. oxysporum isolate 12 and M. phaseolina isolate 14 were the more virulent ones in the pathogenicity tests. Biocontrol agents (Trichoderma viride and Bacillus megaterium) and chemical inducers (salicylic acid [SA] and hydrogen peroxide) individually or in combination were examined for biological control of damping-off and root rot/wilt and growth promoting of faba bean plants in vitro and in vivo. Both antagonistic biocontrol agents and chemical inducers either individually or in combination inhibited growth of the tested pathogenic fungi. Biocontrol agents combined with chemical inducers recorded the highest inhibited growth especially in case SA + T. viride and SA + B. megaterium. Under green house and field conditions, all treatments significantly reduced damping-off and root rot/wilt severity and increased of survival plants. Also, these treatments increased fresh and weights of the survival plants in pots compared with control. The combination between biocontrol agents and chemical inducers were more effective than used of them individually and SA + T. viride was the best treatment in this respect. Also, under field conditions, all these treatments significantly increased growth parameters (plant height and number of branches per plant) and yield components (number of pods per plant and number of seeds per plant, weight of 100 seeds and total yield per feddan) and protein content in both seasons (2010~2011 and 2011~2012). Faba bean seeds soaked in SA + T. viride and SA + B. megaterium were recorded the highest growth parameters and yield components. Generally, the combination between biocontrol agents and chemical inducers recorded the best results for controlling damping-off and root rot/wilt diseases in greenhouse and field with addition improved plant growth and increased yield components in field.

Gibberellin A7 production by Aspergillus tubingensis YH103 and cultural characteristics of endophytic fungi isolated from Tetragonia tetragonoides in Dokdo islands (독도 번행초에서 분리된 내생균류의 배양적 특성과 Aspergillus tubingensis YH103의 gibberellin A7의 생산)

  • You, Young-Hyun;Park, Jong Myong;Lim, Sung Hwan;Kang, Sang-Mo;Park, Jong-Han;Lee, In-Jung;Kim, Jong-Guk
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.32-39
    • /
    • 2016
  • Coastal plant species Tetragonia tetragonoides (Pall.) Kuntze native to the Dokdo islands was sampled and then 17 endophytic fungi were purely isolated based on morphological differences. The fungal isolates were characterized by their growth properties under NaCl concentration or pH gradient. Culture filtrates of the 17 fungal isolates were treated to Waito-c rice (WR) seedlings for verifying plant growth-promoting activity. As the results, YH103 strain showed the highest plant growth-promoting activity among them. Phylogenetic analysis of the isolates was done by the maximum likelihood method based on partial internal transcribed spacer region (ITS region: contaning ITS1, 5.8S, and ITS2), beta-tubulin (BenA), and calmodulin (CaM) gene sequences. Chromatographic analysis of the strain YH103 culture filtrate showed the existence of gibberellins ($GA_4$, $GA_7$, $GA_8$, and $GA_{19}$). Finally, the strain YH103 was identified as Aspergillus tubingensis by microscopic observation and molecular analysis and, to our knowledge, this is the first report of GAs producing A. tubingensis.

Comparison of Antifungal Activity, Plant Growth Promoting Activity, and Mineral-Solubilizing Ability of Bacillus sp. Isolated from Rhizosphere Soil and Root (근권 토양과 뿌리로부터 분리된 Bacillus sp.의 항진균 활성, 식물 생장 촉진 활성 및 미네랄 가용화능 비교)

  • Kim, Hee Sook;Oh, Ka-Yoon;Lee, Song Min;Kim, Ji-Youn;Lee, Kwang Hui;Lee, Sang-Hyeon;Jang, Jeong Su
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.576-586
    • /
    • 2021
  • The purpose of this study was to evaluate the antifungal activity, plant-growth-promoting activity, and mineral solubilization ability of 10 species of phytopathogenic fungi to select a Bacillus sp. from rhizosphere soils and roots that can be used as a microbial agent. The antifungal activity for phytopathogenic fungi varied based on the Bacillus sp. Among the selected strains, DDP4, DDP16, DDP148, SN56, and SN95 exhibited antifungal activity for nine or more species of phytopathogenic fungi. Regarding nitrogen-fixation ability, all Bacillus sp. showed similar levels of activity, and siderophore production ability was relatively high in ANG42 and DDP427. The indole-3-acetic acid production abilities were in the range of 1.83-67.91 ㎍/ml, with variations in activity based on the Bacillus sp. One strain with a high activity was selected from each species, and their mineral solubilization abilities were examined. Most Bacillus sp. could solubilize phosphoric acid and calcium carbonate, and DDP148 and SN56 could solubilize silicon and zinc, respectively. These results suggested that Bacillus sp. can be considered potential multi-purpose microbial agents for plant growth promotion and disease prevention.

Induced systemic resistance and plant growth promotion of a phosphate-solubilizing bacterium, Enterobactor intermedium 60-2G (인산가용미생물, Enterobacterium intermedium 60-2G의 식물 생장 촉진 및 전신저항성 유도)

  • Kim, Young-Cheol;Kim, Chul-Hong;Kim, Kil-Young;Cho, Baik-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.4
    • /
    • pp.223-231
    • /
    • 2002
  • A phosphate-solubilizing bacterium, Enterobacter intermedium 60-2G, was examined for plant growth-promotion and induction of systemic resistance using a model system of cucumber and scab disease, caused by Cladosporium cucumerinum. Compared with a nonbacterized control, treatment of cucumber with E. intermedium significantly reduced the severity of scab disease after challenge-inoculation with C. cucumerinum. Treatment of cucumber with E. intermedium also enhanced cucumber growth. The 60-2G strain showed a strong antimicrobial activity against several plant pathogenic fungi including Fusarium soysporum and Magnaporthe grisea. These results suggest the E. intermedium 60-2G is a promising candidate as a biological control agent displaying multiple beneficial properties to promote plant health.

The effect of nitrogen-fixing microorganisms on plant promotion in cabbage

  • Moon, Je-Hun;Jadamba, Chuluuntsetseg;Yoo, Soo-Cheul
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.190-190
    • /
    • 2017
  • Chemical fertilizers have been used to increase crop production and contributed to escaping food shortages. However, excessive use of chemical fertilizers over a long period caused many problems such as environmental pollution and the hampered production potential of the land. Thus, it is necessary to develop eco-friendly bio-fertilizers that can replace the use of chemical fertilizers. Here, we tested the effect of some nitrogen-fixing microorganims on the plant growth promotion. Seventy free-living nitrogen fixing microorganisms were isolated from rhizosphere of crop cultivation fields, streamside soils and sludge in Ansung, Korea. Of them, three strains (NF2-4-1, Yeast; EMM409, Mesorhizobium; Gsoil662, Burkholderia) were selected to be most efficient in the capacity of N-fixing nitrogen based on colony forming cell assay in N-free media. To investigate the ability to promote plant growth, these strains were inoculated into the soil and cabbage were grown for 4 weeks in the grown chamber. Fresh weight, dry weight, and leaf area were measured from 4-week-old plants. Phenotypic analysis revealed that the growth of the plants inoculated with NF2-4-1 and EMM409 strains were significantly promoted compared to the mock-treated control plants, while Gsoil662-inoculated plants did not show statically significant promotion. These results indicate that these nitrogen-fixing microorganims can be used to develop plant growth promoting bio-fertilizers. Further analysis on nitrogen fixing level in soil by these strains will be tested.

  • PDF

1-Aminocyclopropane-1-Carboxylate Deaminase from Pseudomonas fluorescens Promoting the Growth of Chinese Cabbage and Its Polyclonal Antibody

  • Soh, Byoung Yul;Lee, Gun Woong;Go, Eun Byeul;Kim, Byeo-Ri;Lee, Kui-Jae;Chae, Jong-Chan
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.690-695
    • /
    • 2014
  • Bacterial 1-aminocyclopropane-1-carboxlyate (ACC) deaminase (AcdS) is an enzyme that cleaves ACC, a precursor of the plant hormone ethylene, into ${\alpha}$-ketobutyrate and ammonia. The acdS gene was cloned from Pseudomonas fluorescens, which was capable of improving the seedling of Chinese cabbage under salinity condition. The recombinant AcdS (rAcdS) exhibited optimal activity at pH 8.5 and $30^{\circ}C$. Strong activity was sustained at up to 100 mM NaCl. The polyclonal anti-P. fluorescens AcdS antibody was produced in a rabbit that had been immunized with the purified rAcdS. This antibody successfully recognized the homologous antigens derived from the total proteins of isolated plant growth-promoting microorganisms. A statistically significant correlation was observed between the intensity of hybridization signal and AcdS activity measured by a biochemical method, suggesting its application as a useful indicator for active deaminases.

Isolation, Identification and Biological Control Activity of SKU-78 Strain against Ralstonia solanacearum (풋마름병균, Ralstonia solanacearum의 길항세균 SKU-78 균주의 분리 동정 및 특성)

  • Sung, Pil-Je;Shin, Jeong-Kun;Cho, Hong-Bum;Kim, Shin-Duk
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.48-52
    • /
    • 2005
  • Six stains of plant growth promoting rhizobacteria were selected through germinating seed assay and root colonization assay. Among them, SKU-78 strain induced significant suppression of bacterial wilt disease in tomato and pepper plants. Seed treatment followed by soil drench application with this strain resulted in over 60% reduction of bacterial wilt disease compared with the control. It was suggested that SKU-78 strain activated the host defense systems in plants, based on lack of direct antibiosis against pathogen. According to Bergey's Manual of Systemic Bacteriology and 16S rDNA sequence data, SKU-78 stain was identified as Bacillus sp. SKU-78.

Genome Snapshot of Paenibacillus polymyxa ATCC $842^T$

  • Jeong, Hae-Young;Kim, Ji-Hyun;Park, Yon-Kyoung;Kim, Seong-Bin;Kim, Chang-Hoon;Park, Seung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1650-1655
    • /
    • 2006
  • Bacteria belonging to the genus Paenibacillus are facultatively anaerobic endospore formers and are attracting growing ecological and agricultural interest, yet their genome information is very limited. The present study surveyed the genomic features of P. polymyxa ATCC $842^T$ using pulse-field gel electrophoresis of restriction fragments and sample genome sequencing of 1,747 reads (approximately 17.5% coverage of the genome). Putative functions were assigned to more than 60% of the sequences. Functional classification of the sequences showed a similar pattern to that of B. subtilis. Sequence analysis suggests nitrogen fixation and antibiotic production by P. polymyxa ATCC $842^T$, which may explain its plant growth-promoting effects.

Selection of Plant Growth-Promoting Pseudomonas spp. That Enhanced Productivity of Soybean-Wheat Cropping System in Central India

  • Sharma, Sushil K.;Johri, Bhavdish Narayan;Ramesh, Aketi;Joshi, Om Prakash;Sai Prasad, S.V.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.11
    • /
    • pp.1127-1142
    • /
    • 2011
  • The aim of this investigation was to select effective Pseudomonas sp. strains that can enhance the productivity of soybean-wheat cropping systems in Vertisols of Central India. Out of 13 strains of Pseudomonas species tested in vitro, only five strains displayed plant growth-promoting (PGP) properties. All the strains significantly increased soil enzyme activities, except acid phosphatase, total system productivity, and nutrient uptake in field evaluation; soil nutrient status was not significantly influenced. Available data indicated that six strains were better than the others. Principal component analysis (PCA) coupled cluster analysis of yield and nutrient data separated these strains into five distinct clusters with only two effective strains, GRP3 and HHRE81 in cluster IV. In spite of single cluster formation by strains GRP3 and HHRE81, they were diverse owing to greater intracluster distance (4.42) between each other. These results suggest that the GRP3 and HHRE81 strains may be used to increase the productivity efficiency of soybean-wheat cropping systems in Vertisols of Central India. Moreover, the PCA coupled cluster analysis tool may help in the selection of other such strains.

Activation of Pathogenesis-related Genes by the Rhizobacterium, Bacillus sp. JS, Which Induces Systemic Resistance in Tobacco Plants

  • Kim, Ji-Seong;Lee, Jeongeun;Lee, Chan-Hui;Woo, Su Young;Kang, Hoduck;Seo, Sang-Gyu;Kim, Sun-Hyung
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.195-201
    • /
    • 2015
  • Plant growth promoting rhizobacteria (PGPR) are known to confer disease resistance to plants. Bacillus sp. JS demonstrated antifungal activities against five fungal pathogens in in vitro assays. To verify whether the volatiles of Bacillus sp. JS confer disease resistance, tobacco leaves pre-treated with the volatiles were damaged by the fungal pathogen, Rhizoctonia solani and oomycete Phytophthora nicotianae. Pre-treated tobacco leaves had smaller lesion than the control plant leaves. In pathogenesis-related (PR) gene expression analysis, volatiles of Bacillus sp. JS caused the up-regulation of PR-2 encoding ${\beta}$-1,3-glucanase and acidic PR-3 encoding chitinase. Expression of acidic PR-4 encoding chitinase and acidic PR-9 encoding peroxidase increased gradually after exposure of the volatiles to Bacillus sp. JS. Basic PR-14 encoding lipid transfer protein was also increased. However, PR-1 genes, as markers of salicylic acid (SA) induced resistance, were not expressed. These results suggested that the volatiles of Bacillus sp. JS confer disease resistance against fungal and oomycete pathogens through PR genes expression.