• Title/Summary/Keyword: plant growth promoting

Search Result 493, Processing Time 0.027 seconds

Plant Protective and Growth Promoting Effects of Seed Endophytes in Soybean Plants

  • Jiwon Kim;Seong-Ho Ahn;Ji Sun Yang;Seonwoo Choi;Ho Won Jung;Junhyun Jeon
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.513-521
    • /
    • 2023
  • Seed-borne diseases reduce not only the seed germination and seedling growth but also seed quality, resulting in the significant yield loss in crop production. Plant seed harbors diverse microbes termed endophytes other than pathogens inside it. However, their roles and application to agricultures were rarely understood and explored to date. Recently, we had isolated from soybean seeds culturable endophytes exhibiting in-vitro antagonistic activities against common bacterial and fungal seed-borne pathogens. In this study, we evaluated effects of seed treatment with endophytes on plant growth and protection against the common seed-borne pathogens: four fungal pathogens (Cercospora sojina, C. kikuchii, Septoria glycines, Diaporthe eres) and two bacterial pathogens (Xanthomonas axonopodis pv. glycines, Pseudomonas syringae pv. tabaci). Our experiments showed that treatment of soybean seeds with seed endophytes clearly offer protection against seed-borne pathogens. We also found that some of the endophytes promote plant growth in addition to the disease suppression. Taken together, our results demonstrate agricultural potential of seed endophytes in crop protection.

Effect of Plant-Growth-Promoting-Bacterial Inoculation on the Growth and Yield of Red Pepper(Capsicum annuum L.) with Different Soil Electrical Conductivity Level (염류수준별 고추 생육과 수량에 미치는 식물생육보진미생물(植物生育保進微生物) 접종효과)

  • Lee, Young-Han;Yang, Min-Suk;Yun, Han-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.396-402
    • /
    • 1996
  • This study was conducted to determine the effect of treatment with the plant-growth-promoting bacteria on the growth and yield of red pepper(Capsicum annuum L.) with different soil electrical conductivity(EC) levels. The mixed liquid culture was done pseudomonas P and saboraud dextrose medium. The isolated bacteria(IB) were inoculated by spray of 3.7ml at 1/2000a pot filled with different soil electrical conductivity level(2.9, 8.6, 11.5dS/m) every week, respectively, with mixed liquid culture (Pseudomonas P+Sabouraud dextrose) of eight strains. The plant height of red pepper with IBs treatment in different soil EC levels showed better growth than IBs nontreatment in the order of the 2.9>8.6>11.5 dS/m. The yield of pepper with IBs treatment in different soil EC level was higher in 13% than IBs nontreatment and chemical properties($P_2O_5$, K, Ca, Mg) of the soil after harvest in IBs treatment were slightly increased, while organic matter and EC of IBs treatment were slightly decreased than those of IBs nontreatment. Moisture content of the soil after the harvesting with IBs treatment was slightly increased than IBs nontreatment.

  • PDF

Hormonal Effect and Cytokinin Autonomy in callus Culture of Phaseolus vulgaris L. (식물 Hormone의 영향과 Cytokinin Autonomy)

  • 김상구
    • Journal of Plant Biology
    • /
    • v.25 no.4
    • /
    • pp.161-168
    • /
    • 1982
  • The activities of auxins and cytokinins have been examined in the growth of callus tissue derived from Phaseolus vulgaris L. cv. Damyang. The synthetic auxin, picloram was the most effective in promoting callus growth and the range of effective concentrations (0.1$\mu{M}$ to 32$\mu{M}$) was broad. 2, 4-D also enhanced callus growth at the optimal concentration of 3.2$\mu{M}$. NAA promoted callus growth at relatively higher concentrations than other auxins tested. IAA was less effective in supporting callus growth. Cytokinin bearing saturated side chain ($N^6$-isopentyladenine) was approximately 30 times more active than the corresponding unsaturated compound, $N^6$-($\D^2$-isopentenyl) adenine. The abilities of cytokinin-autonomous growth were also examined. Callus tissues previously grown on concentrations lower and/or higher than optimal concentrations of cytokinins were better habituated in the subsequent passage. It was suggested that the development of cytokinin autonomy may be related to dosage-concentrations of cytokinin in the previous passage.

  • PDF

Different Mechanisms of Induced Systemic Resistance and Systemic Acquired Resistance Against Colletotrichum orbiculare on the Leaves of Cucumber Plants

  • Jeun, Yong-Chull;Park, Kyung-Seok;Kim, Choong-Hoe
    • Mycobiology
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2001
  • Defense mechanisms against anthracnose disease caused by Colletotrichum orbiculare on the leaf surface of cucumber plants after pre-treatment with plant growth promoting rhizobacteria(PGPR), amino salicylic acid(ASA) or C. orbiculare were compared using a fluorescence microscope. Induced systemic resistance was mediated by the pre-inoculation in the root system with PGPR strain Bacillus amylolquefaciens EXTN-1 that showed direct antifungal activity to C. gloeosporioides and C. orbiculare. Also, systemic acquired resistance was triggered by the pre-treatments on the bottom leaves with amino salicylic acid or conidial suspension of C. orbiculare. The protection values on the leaves expressing SAR were higher compared to those expressing ISR. After pre-inoculation with PGPR strains no change of the plants was found in phenotype, while necrosis or hypersensitive reaction(HR) was observed on the leaves of plants pre-treated with ASA or the pathogen. After challenge inoculation, inhibition of fungal growth was observed on the leaves expressing both ISR and SAR. HR was frequently observed at the penetration sites of both resistance-expressing leaves. Appressorium formation was dramatically reduced on the leaves of plants pre-treated with ASA, whereas EXTN-1 did not suppress the appressorium formation. ASA also more strongly inhibited the conidial germination than EXTN-1. Conversely, EXTN-1 significantly increased the frequency of callose formation at the penetration sites, but ASA did not. The defense mechanisms induced by C. orbiculare were similar to those by ASA. Based on these results it is suggested that resistance mechanisms on the leaf surface was different between on the cucumber leaves expressing ISR and SAR, resulting in the different protection values.

  • PDF

A Two-Strain Mixture of Rhizobacteria Elicits Induction of Systemic Resistance Against Pseudomonas syringae and Cucumber Mosaic Virus Coupled to Promotion of Plant Growth on Arabidopsis thaliana

  • Ryu Choong-Min;Murphy John F.;Reddy M.S.;Kloepper Joseph W.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.280-286
    • /
    • 2007
  • We evaluated a commercial biopreparation of plant growth-promoting rhizobacteria (PGPR) strains Bacillus subtilis GB03 and B. amyloliquefaciens IN937a formulated with the carrier chitosan (Bio Yield) for its capacity to elicit growth promotion and induced systemic resistance against infection by Cucumber Mosaic Virus (CMV) and Pseudomonas syringae pv. tomato DC3000 in Arabidopsis thaliana. The biopreparation promoted plant growth of Arabidopsis hormonal mutants, which included auxin, gibberellic acid, ethylene, jasmonate, salicylic acid, and brassinosteroid insensitive lines as well as each wild-type. The biopreparation protected plants against CMV based on disease severity in wild-type plants. However, virus titre was not lower in control plants and those treated with biopreparation, suggesting that the biopreparation induced tolerance rather than resistance against CMV. Interestingly, the biopreparation induced resistance against CMV in NahG plants, as evidenced by both reduced disease severity and virus titer. The biopreparation also elicited induced resistance against P. syringae pv. tomato in the wild-type but not in NahG transgenic plants, which degrade endogenous salicylic acid, indicating the involvement of salicylic acid signaling. Our results indicate that some PGPR strains can elicit plant growth promotion by mechanisms that are different from known hormonal signaling pathways. In addition, the mechanism for elicitation of induced resistance by PGPR may be pathogen-dependent. Collectively, the two-Bacilli strain mixture can be utilized as a biological inoculant for both protection of plant against bacterial and viral pathogens and enhancement of plant growth.

Clonal Propagation in Commiphora Wightii (Arnott.) Bhandari

  • Mishra, Dhruv Kumar;Kumar, Devendra
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.2
    • /
    • pp.218-225
    • /
    • 2014
  • Studies were carried out to standardize and develop a suitable macro-propagation technology for large scale production of superior clonal stock through stem cuttings in Commiphora wightii Arnott (Bhandari), a data deficient medicinal plant of arid region. For the purpose, three experiments were conducted. The first experiment was tried to elucidate the impact of various cutting diameters (0.50-0.75 cm, 0.75-1.00 cm, 1.00-1.50 cm, and >1.50 cm) in combination with varying growing conditions (sunlight, shade house and mist chamber) on shoot sprouting and rooting without using exogenous plant growth regulators. Cutting diameter (size 0.75-1.00 cm) in mist chamber has shown maximum sprouting (90.00%) and rooting (73.33%), primary root (6.67) and secondary root (16.67) followed by 1.00-1.51 cm in mist chamber. Minimum sprouting (40.00%), rooting (33.33%), number of shoot (1.33), primary root (1.00) and number of secondary root (1.00) was recorded in cutting diameter (size >1.50 cm) in sunlight. Second experiment was performed to find out optimum growth regulator concentration of rooting hormone (100, 200, 500 and 1000 ppm) of Indole-3-acetic acid (IAA) and Indole-3-butyric Acid (IBA) on adventitious root formation on cuttings diameter (size 0.25-0.50 cm) in comparison to control. Maximum rooting percentage (93.33%) was recorded in 200 ppm followed by 500 ppm (86.66%) of IBA as compared to control, which showed only 60 per cent sprouting. Third experiment was performed with newly formed juvenile micro-cuttings treated with varying concentrations of IAA and IBA. The juvenile cuttings (size 6-10 cm, basal dia <0.25 cm) were selected as micro-cuttings. The cuttings treated with IBA (500 ppm) showed 64.30% rooting as compared to other treatments. Results of above experiments indicate that cuttings (size 0.75-1.00 cm dia) may be developed in mist chamber for better performance. While using heavier cuttings, no growth promoting hormones is required however; growth regulator 200 ppm concentration of IBA rooting hormone was observed optimum for promoting macro-propagation in stem cuttings of lower diameter class (0.25-0.50 cm).

Bacillus vallismortis EXTN-1-Mediated Growth Promotion and Disease Suppression in Rice

  • Park Kyung-Seok;Paul Diby;Yeh Wan-Hae
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.278-282
    • /
    • 2006
  • Bacillus vallismortis EXTN-1, a biocontrol agent in cucumber, tomato and potato was tested in rice pathosystem against rice fungal pathogens viz. Magnaporthe grisea, Rhizoctonia solani and Cochliobolus miyabeanus. Apart from increasing the yield in the bacterized plants (11.6-12.6% over control), the study showed that EXTN1 is effective in bringing about disease suppression against all the tested fungal pathogens. EXTN-l treatment resulted in 52.11% reduction in rice blast, 83.02% reduction in sheath blight and 11.54% decrease in brown spot symptoms. As the strain is proven as an inducer for systemic resistance based on PR gene expression in Arabidopsis and tobacco models, it is supposed that a similar mechanism works in rice, bringing about disease suppression. The strain could be used as a potent biocontrol and growth-promoting agent in rice cropping system.

Research Trends on Plant Associated Beneficial Bacteria as Biofertilizers for Sustainable Agriculture: An Overview (지속농업을 위한 생물비료로서의 유용세균관련 식물검정 연구 개관)

  • Sa, Tongmin;Chauhan, Puneet Singh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.spc
    • /
    • pp.20-28
    • /
    • 2009
  • The sustainability of conventional agriculture which is characterized by input dependent and ecologically simplified food production system is vague. Chemicals and present practices used in agriculture are not only costly but also have widespread implications on human and animal health, food quality and safety and environmental quality. Thus there is a need for alternative farming practices to sustain food production for the escalating population and conserve environment for future generations. The present research scenario in the area of plant microbe interactions for maintaining sustainable agriculture suggests that the level of internal regulation in agro-ecosystems is largely dependent on the level of plant and microbial diversity present in the soil. In agro-ecosystems, biodiversity performs a variety of ecological services beyond the production of food, including recycling of nutrients, regulation of microclimate and local hydrological processes, suppression of undesirable organisms and detoxification of noxious chemicals. Controlling the soil microflora to enhance the predominance of beneficial and effective microorganisms can help improve and maintain soil chemical and physical properties. The role of beneficial soil microorganisms in sustainable productivity has been well construed. Some plant bacteria referred to as plant growth-promoting rhizobacteria (PGPR) can contribute to improve plant growth, nutrient uptake and microbial diversity when inoculated to plants. Term PGPR was initially used to describe strains of naturally occurring non-symbiotic soil bacteria have the ability to colonize plant roots and stimulate plant growth PGPR activity has been reported in strains belonging to several other genera, such as Azotobacter, Azospirillum, Arthrobacter Bacillus, Burkhokderia, Methylobacterium, and Pseudomonas etc. PGPR stimulate plant growth directly either by synthesizing hormones such as indole acetic acid or by promoting nutrition, for example, by phosphate solubilization or more generally by accelerating mineralization processes. They can also stimulate growth indirectly, acting as biocontrol agents by protecting the plant against soil borne fungal pathogens or deleterious bacteria. Present review focuses on some recent developments to evolve strategies for better biotechnological exploitation of PGPR's.

Evaluation of Soil Streptomyces spp. for the Biological Control of Fusarium Wilt Disease and Growth Promotion in Tomato and Banana

  • Praphat, Kawicha;Jariya, Nitayaros;Prakob, Saman;Sirikanya, Thaporn;Thanwanit, Thanyasiriwat;Khanitta, Somtrakoon;Kusavadee, Sangdee;Aphidech, Sangdee
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.108-122
    • /
    • 2023
  • Fusarium oxysporum f. sp. lycopersici (Fol) and Fusarium oxysporum f. sp. cubense (Foc), are the causal agent of Fusarium wilt disease of tomato and banana, respectively, and cause significant yield losses worldwide. A cost-effective measure, such as biological control agents, was used as an alternative method to control these pathogens. Therefore, in this study, six isolates of the Streptomyces-like colony were isolated from soils and their antagonistic activity against phytopathogenic fungi and plant growth-promoting (PGP) activity were assessed. The results showed that these isolates could inhibit the mycelial growth of Fol and Foc. Among them, isolate STRM304 showed the highest percentage of mycelial growth reduction and broad-spectrum antagonistic activity against all tested fungi. In the pot experiment study, the culture filtrate of isolates STRM103 and STRM104 significantly decreased disease severity and symptoms in Fol inoculated plants. Similarly, the culture filtrate of the STRM304 isolate significantly reduced the severity of the disease and symptoms of the disease in Foc inoculated plants. The PGP activity test presents PGP activities, such as indole acetic acid production, phosphate solubilization, starch hydrolysis, lignin hydrolysis, and cellulase activity. Interestingly, the application of the culture filtrate from all isolates increased the percentage of tomato seed germination and stimulated the growth of tomato plants and banana seedlings, increasing the elongation of the shoot and the root and shoot and root weight compared to the control treatment. Therefore, the isolate STRM103 and STRM104, and STRM304 could be used as biocontrol and PGP agents for tomato and banana, respectively, in sustainable agriculture.