• 제목/요약/키워드: plant glycoprotein

검색결과 57건 처리시간 0.029초

식물 유래 당단백질의 당질 구조 분석 (Structural Analysis of Oligosaccharides of a Plant Glycoprotein)

  • 배재우;박병태;윤두천;김주영;황혜성;박현주;나종천;김하형
    • 약학회지
    • /
    • 제54권6호
    • /
    • pp.449-454
    • /
    • 2010
  • The glycosylation of glycoproteins from mammalian or plants can affect their efficacy, stability, solubility, and half-life. In the present study, we investigated plant glycosylation and their relative intensity (%) in a plant carbohydratebinding protein with the hemagglutination and antiproliferative activities. The hemagglutination activity on the deglycosylated protein was decreased as a 16-fold than that of intact glycoprotein. Using the HPLC with fluorescence detector and mass spectrometer, the major eight bi- or triantennary oligosaccharides containing xylose, fucose, mannose, galactose, and N-acetylglucosamine were identified and structurally characterized. The present results indicate that the oligosaccharides on this plant glycoprotein is necessary for their own property.

Toxicity of Tomato Spotted Wilt Virus Glycoprotein Signal Peptide and Promoter Activity of th 5' UTR

  • Park, Tae-Jin;Kim, Sun-Chang;Thomas L. German
    • The Plant Pathology Journal
    • /
    • 제15권6호
    • /
    • pp.313-318
    • /
    • 1999
  • Cloning of the 5'untranslated region (5' UTR) and Nterminus of the glycoprotein precursor (G2G1) open reading frame of tomato spotted wilt virus has been problematic, possibly because of the toxicity of a signal peptide at the beginning of th G2G1 protein precursor. The toxicity of the signal peptide to bacterial growth and the reason for the expression of the peptide gene in Escherichia coli were investigated by cloning the 5' UTR and the signal peptide sequence separately. Cells transformed with the plasmid containing both the first 30 amino acids of the glycoprotein and the 5' UTR showed a severe growth inhibition whereas transformants harboring either the plasmid with the signal sequence or the 5'UTR alone did not show any ingibition. An E. coli promoter-like sequence was found in the 5'UTR and tis promoter acivity was confirmed with a promoter-less GUS gene cloned downstream of the 5'UTR. In the cloning of the Tomato spotted wilt virus (TSWV) glycoprotein G2G1 open reading frame all the recovered plasmids contained stop codons in the signal sequence region. However, clones containing no stop codon were recovered when the signal sequence and the 5'UTR were cloned separately.

  • PDF

Establishment of multiplex RT-PCR for differentiation between rabies virus with and that without mutation at position 333 of glycoprotein

  • Yang, Dong-Kun;Kim, Ha-Hyun;Lee, Siu;Yoo, Jae-Young
    • Journal of Veterinary Science
    • /
    • 제21권2호
    • /
    • pp.22.1-22.9
    • /
    • 2020
  • Rabid raccoon dogs (Nyctereutes procyonoides koreensis) have been responsible for animal rabies in South Korea since the 1990s. A recombinant rabies vaccine strain, designated as ERAGS, was constructed for use as a bait vaccine. Therefore, new means of differentiating ERAGS from other rabies virus (RABV) strains will be required in biological manufacturing and diagnostic service centers. In this study, we designed two specific primer sets for differentiation between ERAGS and other RABVs based on mutation in the RABV glycoprotein gene. Polymerase chain reaction analysis of the glycoprotein gene revealed two DNA bands of 383 bp and 583 bp in the ERAGS strain but a single DNA band of 383 bp in the field strains. The detection limits of multiplex reverse transcription polymerase chain reaction (RT-PCR) were 80 and 8 FAID50/reaction for the ERAGS and Evelyn-Rokitnicki-Abelseth strains, respectively. No cross-reactions were detected in the non-RABV reference viruses, including canine distemper virus, parvovirus, canine adenovirus type 1 and 2, and parainfluenza virus. The results of multiplex RT-PCR were 100% consistent with those of the fluorescent antibody test. Therefore, one-step multiplex RT-PCR is likely useful for differentiation between RABVs with and those without mutation at position 333 of the RABV glycoprotein gene.

Glyco-engineering of Biotherapeutic Proteins in Plants

  • Ko, Kisung;Ahn, Mi-Hyun;Song, Mira;Choo, Young-Kug;Kim, Hyun Soon;Ko, Kinarm;Joung, Hyouk
    • Molecules and Cells
    • /
    • 제25권4호
    • /
    • pp.494-503
    • /
    • 2008
  • Many therapeutic glycoproteins have been successfully generated in plants. Plants have advantages regarding practical and economic concerns, and safety of protein production over other existing systems. However, plants are not ideal expression systems for the production of biopharmaceutical proteins, due to the fact that they are incapable of the authentic human N-glycosylation process. The majority of therapeutic proteins are glycoproteins which harbor N-glycans, which are often essential for their stability, folding, and biological activity. Thus, several glyco-engineering strategies have emerged for the tailor-making of N-glycosylation in plants, including glycoprotein subcellular targeting, the inhibition of plant specific glycosyltranferases, or the addition of human specific glycosyltransferases. This article focuses on plant N-glycosylation structure, glycosylation variation in plant cell, plant expression system of glycoproteins, and impact of glycosylation on immunological function. Furthermore, plant glyco-engineering techniques currently being developed to overcome the limitations of plant expression systems in the production of therapeutic glycoproteins will be discussed in this review.

자가불화합성 Brassica campestris에 있어서 단일유전자좌가설에 의해 분리되지 않는 S-유전자 계통의 분석 (Analysis of Non-segregated S-allele Strain by Single-Locus Hypothesis in Self-incompatible Brassica campestris)

  • 노일섭
    • Journal of Plant Biology
    • /
    • 제36권2호
    • /
    • pp.127-132
    • /
    • 1993
  • Self-incompatibility in Brassica campestris is controlled by multi-allele system in a single genetic locus, the S locus, and it is elucidated that S-glycoproteins are S gene products. In this experiments, we examined the genetic mode(pollen tube behavior and segregation of S-glycoprotein), characteristic of S-glycoproteins and DNA constitution within nuclear genome on S gene family that unexplained by single locus model, and investigated the segregation pattern of S-glycoproteins in bred F1 generation. By diallel cross among the 15 plants within one family the existence of three types of homozygotes and three types of heterozygotes were observed, and segregation of S-allele could not explained by single locus model. From the results of IEF-immunoblot analysis for non-segregated individual plant, the segregation pattern of S specific bands was corresponded with results of diallel cross except with one case(SaSa genotype). The molecular weight of 6 different S-genotype varied in near by 50 kD, and each genotype expressed with 2 or 3 bands. Specific bands in SaSa, SbSb, ScSc has almost similar molecular weight between them. Southern analysis of genomic DNA probed with S-glycoprotein cDNA for 6 different genotypes revealed that there are clear difference in polymorphism, multiple bands of hybridization, when restriction enzymes of EcoR I were used. It could be assumed that there are several sequences related to the S-glycoprotein structural genes within their nuclear genome. Therefore, we suggested the possibilities that S-allele system could be controlled by multi-locus, that dominance-recessive interactions could be explained by modifier gene or supressor gene based on the results of abnormal segregation of S-glycoprotein in bred F1. The F2 analyses are progressing in now.

  • PDF

The first virus isolation and partial characterization of equine herpesvirus-4 in a horse, South Korea

  • Choi, Eun-Jin;Lee, Hyun-Kyoung;Lee, Kyoung-Hyun;So, Byoung-Jae;Song, Jae-Young;Do, Jae-Chul;Yang, Seon-Joo;Lee, Hyun-Chul;Yang, Young-Jin
    • 한국동물위생학회지
    • /
    • 제38권2호
    • /
    • pp.141-144
    • /
    • 2015
  • An equine herpesvirus-4 (EHV-4) was isolated in nasal swabs collected in a horse showing respiratory clinical signs. Equine dermis cells inoculated with the sample were observed with characteristic viral cytopathic effects after 3 days of postinoculation and the infected cells exhibited bright intracelluar fluorescence by indirect immunofluorescence assay. At the nucleotide level, the partial glycoprotein B gene of the Korean EHV-4 isolate (K001) had 99.9% identity to 1942 strain (GenBank No. M26171). To author's knowledge, the report describes the first isolation and partial characterization of EHV-4 in Korea. The virus can be used for further study of EHV-4.

마황 추출물의 항바이러스 활성 (Antiviral activity of methanol extract from Ephedra sinica Stapf)

  • 이도승;이동선
    • 한국식품저장유통학회지
    • /
    • 제21권5호
    • /
    • pp.735-739
    • /
    • 2014
  • Newcastle disease virus(NDV) 감염된 baby hamster kidney(BHK) 세포에서 syncytium(합포체) 형성은 세포막 표면으로의 수송된 바이러스 당단백질 hemagglutinin-neuramidase(HN)에 의해 일어난다. HAU 값은 추출물의 농도가 25과 3.2 ug/mL 사이에서는 현저하게 감소하였으나, NDV 감염된 HAD(%)는 25 ug/mL 농도에서 광범위한 흡착능의 감소를 나타내 바이러스 당단백질의 세포내 생합성은 저해되지 않았다. 그러므로, 약용식물인 마황 메탄올 추출물이 바이러스 당단백질의 세포막으로의 수송과 함께 합포체 형성을 저해하여 항바이러스 작용을 하였다. 또한 마황 추출물의 저해활성을 조사한 결과 ${\alpha}$-glucosidase에 대한 추출물의 $IC_{50}$$18{\mu}g/mL$이었으며, ${\beta}$-glucosidase, ${\alpha}$-mannosidase, ${\beta}$-mannosidase에 대한 마황 추출물의 $IC_{50}$은 각각 60, 40, $150{\mu}g/mL$로 나타나 ${\beta}$-type glycosidases 보다 ${\alpha}$-type glycosidase에 대한 효소활성 저해능이 우수하였다. 따라서 $IC_{50}$농도에서는 세포내에서 당단백질 생합성은 저해되지 않으며 당단백질의 수송을 저해하는 것으로 판단되었으며 향후 항바이러스 관련 작용기작의 연구가 필요하다고 판단된다.

식물의 자가불화합성, 최근의 진보 (Recent Advances in the Studies of Self-Incompatibility of plants)

  • 한창열;한지학
    • 식물조직배양학회지
    • /
    • 제21권5호
    • /
    • pp.253-275
    • /
    • 1994
  • Many flowering plants possess genetically controlled self -incompatibility (SI) system that prevents inbreeding and promotes outcrosses. SI is usually controlled by a single, multiallelic S-locus. In gametophytically controlled system, SI results when the S-allele of the pollen is matched by one of the two S-alleles in the style, while in the sporophytic system self-incompatible reaction occurs by the interaction between the pistil genotype and genotype of, not the pollen, but the pollen parent In the former system the self-incompatible phenotype of pollen is determined by the haploid genome of the pollen itself but in the latter the pollen phenotype is governed by the genotype of the pollen parent along with the occurrence of either to-dominant or dominant/recessive allelic interactions. In the sporophytic type the inhibition reaction occurs within minutes following pollen-stigma contact, the incompatible pollen grains usually failing to germinate, whereas in gametophytic system pollen tube inhibition takes place during growth in the transmitting tissue of the style. Recognition and rejection of self pollen are the result of interaction between the S-locus protein in the pistil and the pollen protein. In the gametophytic SI the S-associated glycoprotein which is similar to the fungal ribonuclease in structure and function are localized at the intercellular matrix in the transmitting tissue of the style, with the highest concentration in the collar of the stigma, while in the sporophytic SI deposit of abundant S-locus specific glycoprotein (SLSG).is detected in the cell wall of stigmatic papillae of the open flowers. In the gametophytic system S-gene is expressed mostly at the stigmatic collar the upper third of the style length and in the pollen after meiosis. On the other hand, in the sporophytic SI S-glycoprotein gene is expressed in the papillar cells of the stigma as well as in e sporophytic tape is cells of anther wall. Recognition and rejection of self pollen in the gametophytic type is the reaction between the ribonuclease in the transmitting tissue of the style and the protein in the cytoplasm of pollen tube, whereas in the sporophytic system the inhibition of selfed pollen is caused by the interaction between the Sycoprotein in the wall of stigmatic papillar cell and the tapetum-origin protein deposited on the outer wall of the pollen grain. The claim that the S-allele-associated proteins are involved in recognition and rejection of self pollen has been made merely based on indirect evidence. Recently it has been verified that inhibition of synthesis of S$_3$ protein in Petunia inflata plants of S$_2$S$_3$ genotype by the antisense S$_3$ gene resulted in failure of the transgenic plant to reject S$_3$ pollen and that expression of the transgenic encoding S$_3$ protein in the S$_1$S$_2$ genotype confers on the transgenic plant the ability to reject S$_3$ pollen. These finding Provide direct evidence that S-proteins control the s elf-incompatibility behavior of the pistil.

  • PDF

오배자 추출물의 항바이러스 활성 (Antiviral activity of methanol extract from Rhus chinensis gall)

  • 이도승;민태선;이동선
    • Journal of Applied Biological Chemistry
    • /
    • 제61권4호
    • /
    • pp.379-382
    • /
    • 2018
  • Newcastle disease virus (NDV) 감염된 baby hamster kidney 세포에서 Syncytium (합포체) 형성은 세포막 표면으로의 수송된 바이러스 당단백질 hemagglutinin-neuramidase에 의해 일어난다. HAU 값은 추출물의 농도가 25과 $3.2{\mu}g/mL$ 사이에서는 현저하게 감소하였으나, $25{\mu}g/mL$ 농도에서는 NDV 감염된 HAD (%)는 광범위한 흡착능의 감소를 나타났으나 바이러스 당단백질의 세포내 생합성은 저해되지 않았다. 그러므로 오배자 추출물은 바이러스 당단백질의 세포막으로의 수송과 함께 합포체 형성을 저해하여 항바이러스 활성을 갖는 것으로 결론된다. 또한 오배자 추출물의 저해활성을 조사한 결과 ${\alpha}-glucosidase$에 대한 추출물의 $IC_{50}$$12.5{\mu}g/mL$이었으며, ${\beta}-glucosidase$, ${\alpha}-glucosidase$, ${\beta}-mannosidase$에 대한 오배자 추출물의 $IC_{50}$은 각각 26, 36, $50{\mu}g/mL$로 나타나 ${\beta}-type$ glycosidases 보다 ${\alpha}-type$ glycosidase에 대한 효소활성 저해능이 우수하였다. 따라서 $IC_{50}$ 농도에서는 세포내에서 당단백질 생합성은 저해되지 않으며 당단백질의 수송을 저해하는 것으로 판단되었으며 향후 항바이러스 관련 작용기작의 연구가 필요하다고 사료된다.