• 제목/요약/키워드: plant engineering

Search Result 9,449, Processing Time 0.036 seconds

Power Plant Fault Monitoring and Diagnosis based on Disturbance Interrelation Analysis Graph (교란들의 인과관계구현 데이터구조에 기초한 발전소의 고장감시 및 고장진단에 관한 연구)

  • Lee, Seung-Cheol;Lee, Sun-Gyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.9
    • /
    • pp.413-422
    • /
    • 2002
  • In a power plant, disturbance detection and diagnosis are massive and complex problems. Once a disturbance occurs, it can be either persistent, self cleared, cleared by the automatic controllers or propagated into another disturbance until it subsides in a new equilibrium or a stable state. In addition to the Physical complexity of the power plant structure itself, these dynamic behaviors of the disturbances further complicate the fault monitoring and diagnosis tasks. A data structure called a disturbance interrelation analysis graph(DIAG) is proposed in this paper, trying to capture, organize and better utilize the vast and interrelated knowledge required for power plant disturbance detection and diagnosis. The DIAG is a multi-layer directed AND/OR graph composed of 4 layers. Each layer includes vertices that represent components, disturbances, conditions and sensors respectively With the implementation of the DIAG, disturbances and their relationships can be conveniently represented and traced with modularized operations. All the cascaded disturbances following an initial triggering disturbance can be diagnosed in the context of that initial disturbance instead of diagnosing each of them as an individual disturbance. DIAG is applied to a typical cooling water system of a thermal power plant and its effectiveness is also demonstrated.

Choosing an optimal connecting place of a nuclear power plant to a power system using Monte Carlo and LHS methods

  • Kiomarsi, Farshid;Shojaei, Ali Asghar;Soltani, Sepehr
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1587-1596
    • /
    • 2020
  • The location selection for nuclear power plants (NPP) is a strategic decision, which has significant impact operation of the plant and sustainable development of the region. Further, the ranking of the alternative locations and selection of the most suitable and efficient locations for NPPs is an important multi-criteria decision-making problem. In this paper, the non-sequential Monte Carlo probabilistic method and the Latin hypercube sampling probabilistic method are used to evaluate and select the optimal locations for NPP. These locations are identified by the power plant's onsite loads and the average of the lowest number of relay protection after the NPP's trip, based on electricity considerations. The results obtained from the proposed method indicate that in selecting the optimal location for an NPP after a power plant trip with the purpose of internal onsite loads of the power plant and the average of the lowest number of relay protection power system, on the IEEE RTS 24-bus system network given. This paper provides an effective and systematic study of the decision-making process for evaluating and selecting optimal locations for an NPP.

A Study on the Implementation of CAN in the Distributed System of Power Plant (발전설비 분산제어 시스템에서 CAN 구축기술 연구)

  • Kim, Uk-Heon;Hong, Seung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.760-772
    • /
    • 1999
  • The CAN is a serial communication protocol for distributed real-time control and automation systems. Data generated from field devices in the distributed control of power plant are classified into three categories: real-time event data, real-time control data, non-real-time data. These data share a CAN medium. If the traffic of the CAN protocol is not efficiently controlled, performance requirements of the power plant system could not be satisfied. This paper proposes a bandwidth allocation algorithm that can be applicable to the CAN protocol. The bandwidth allocation algorithm not only satisfies the performance requirements of the real-time systems in the power plant but also fully utilizes the bandwidth of CAN. The bandwidth allocation algorithm introduced in this paper is validated using the integrated discrete-event/continuous-time simulation model which comprises the CAN network and distributed control system of power plant.

  • PDF

A Study on Plant Training System Platform for the Collaboration Training between Operator and Field Workers (운전자와 현장조업자의 협동훈련을 위한 플랜트 훈련시스템 플랫폼 연구)

  • Lee, Gyungchang;Chung, Kyo-il;Mun, Duhwan;Youn, Cheong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.4
    • /
    • pp.420-430
    • /
    • 2015
  • Operator Training Simulators (OTSs) provide macroscopic training environment for plant operation. They are equipped with simulation systems for the emulation of remote monitoring and controlling operations. OTSs typically provide 2D block diagram-based graphic user interface (GUI) and connect to process simulation tools. However, process modeling for OTSs is a difficult task. Furthermore, conventional OTSs do not provide real plant field information since they are based on 2D human machine interface (HMI). In order to overcome the limitation of OTSs, we propose a new type of plant training system. This system has the capability required for collaborative training between operators and field workers. In addition, the system provides 3D virtual training environment such that field workers feel like they are in real plant site. For this, we designed system architecture and developed essential functions for the system. For the verification of the proposed system design, we implemented a prototype training system and performed experiments of collaborative training between one operator and two field workers with the prototype system.

Application of the Leak Before Break(LBB) Concept to a Heat Exchanger in a Nuclear Power Plant

  • Kwon, Jae-Do;Lee, Choon-Yeol;Lee, Yong-Son;Sul, Il-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.10-20
    • /
    • 2001
  • The leak before break(LBB) concept is difficult to apply to a structure with a thin tube that is immersed in a water environment. A heat exchanger in a nuclear power plant is such a structure. The present paper addresses an application of the LBB concept to a heat exchanger in a nuclear power plant. The minimum leaked coolant amount(approximately 37.9 liters) containing the radioactive material which can activate the radiation detector device installed in near the heat exchanger is assumed. A postulated initial flaw size that can not grow to a critical flaw size within the time period to activate the radiation detector is justified. In this case, the radiation detector can activate the warning signal caused by coolant leakage from initially postulated flaws of the heat exchanger. The nuclear plant can safely shutdown when this occurs. Since the postulated initial flaw size can not grow to the critical flaw size, the structural integrity of the heat exchanger is not impeded. Particularly the informational scenario presented in this paper discusses an actual nuclear plant.

  • PDF

A study on the application of the extreme value distribution model for analysis of probability of exceeding the facility capacity (시설용량을 초과하는 폐수량의 유입확률 분석을 위한 극치분포모델의 적용에 관한 연구)

  • Choi, Sunghyun;Yoo, Soonyoo;Park, Taeuk;Park, Kyoohong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.4
    • /
    • pp.369-379
    • /
    • 2016
  • It was confirmed that the extreme value distribution model applies to probability of exceeding more than once a day monthly the facility capacities using data of daily maximum inflow rate for 7 wastewater treatment plant. The result of applying the extreme value model, A, D, E wastewater treatment plant has a problem compared to B, C, F, G wastewater treatment plant. but all the wastewater treatment plant has a problem except C, F wastewater treatment plant based 80% of facility capacity. In conclusion, if you make a standard in statistical aspects probability exceeding more than once a day monthly can be 'exceed day is less than a few times annually' or 'probability of exceeding more than once a day monthly is less than what percent'.

A techno-economic analysis of partial repowering of a 210 MW coal fired power plant

  • Samanta, Samiran;Ghosh, Sudip
    • Advances in Energy Research
    • /
    • v.3 no.3
    • /
    • pp.167-179
    • /
    • 2015
  • This paper presents a techno-economic analysis of a partial repowering scheme for an existing 210 MW coal fired power plant by integrating a gas turbine and by employing waste heat recovery. In this repowering scheme, one of the four operating coal mills is taken out and a new natural gas fired gas turbine (GT) block is considered to be integrated, whose exhaust is fed to the furnace of the existing boiler. Feedwater heating is proposed through the utilization of waste heat of the boiler exhaust gas. From the thermodynamic analysis it is seen that the proposed repowering scheme helps to increase the plant capacity by about 28% and the overall efficiency by 27%. It also results in 21% reduction in the plant heat rate and 29% reduction in the specific $CO_2$ emissions. The economic analysis reveals that the partial repowering scheme is cost effective resulting in a reduction of the unit cost of electricity (UCOE) by 8.4%. The economic analysis further shows that the UCOE of the repowered plant is lower than that of a new green-field power plant of similar capacity.

Application System Improvement of the Codes and Standards for Plant Design (플랜트 설계를 위한 표준코드의 활용체계 개선방안)

  • Gu, Bon-Hak;Kim, Tae-Hui
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.4
    • /
    • pp.81-89
    • /
    • 2007
  • Plant industry is one of important industry that possesses 70% of fund in construction contracts for oversea customers at 2004. It is called E(Engineering), P(Procurement), C(Construction) industry. Plant industry of Korea has a competitive power of the detail design and operation for the establishment construction. But among E, P, C at plant industry, technic of E part which is able to make higher profits; Planning and basic designing; are poor. They should have much more improvements. Thus to enhance a competitive power of planning and basic designing, we are going to analyze problems of utilizing a standard code for plant design and present plans for their improvements.

Recent advances in development of commercial rose by molecular breeding (분자육종에 의한 장미 신품종 최근 개발 동향)

  • Oh, Myung-Jin;Kim, Jong-Hyun;Ahn, Myung-Suk;Liu, Jang-R.;Kim, Suk-Weon
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.414-424
    • /
    • 2010
  • This report describes recent advances in tissue culture, genetic transformation of commercial rose (Rosa hybrida) and in development of new rose cultivars by molecular breeding. Rose is one of major cut-flowers in global horticulture industry. Successful progresses were made in development of new cultivars for pathogen resistant, environmental stress resistant and petal color modification by molecular breeding. New cultivars, however, has not reported yet in korea, although lots of progresses were achieved in each field of conventional breeding, tissue culture and genetic transformation. Cooperation in these research fields will promote screening of useful genes to have specific traits on rose and exploiting of processes to improve in the efficiency of tissue culture and genetic transformation of rose, therefore, we hopefully expect that new rose cultivars by molecular breeding will be released in the near future.

Desulfurization Characteristics for Anthracite Coal Power Plant by Increasing Bituminous Coal Fuel (국내 무연탄 발전소 역청탄 사용시 탈황 특성 연구)

  • Kim, Jeong-You;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.4 no.4
    • /
    • pp.71-77
    • /
    • 2008
  • The sulfur oxides is one of important materials to come about air pollution at thermal plant consuming fossil fuel. The several flue gas desulfurization equipments are installed and operated to decrease sulfur oxides. The flue gas desulfurization of our thermal plant is designed for optimizing flue gas desulfurization technical development and research by Korea Electric Power Research Institute. We operate this desulfurization equipment. Now, our country imports nearly 97 percentage of the energy source and competes with the world for the energy because of the sudden rise of raw materials cost. The fuel cost decrease of power plants is the most important factor of the operation. The fuel used in the experiment is the domestic anthracite from Kangwon Taeback and the bituminous coal from Taldinsky Mine in Russia. This Study is experimental investigations of desulfurization characteristics for domestic anthracite power plant by increasing bituminous coal. We surveyed possible parameters and conducted the performance about desulfurization equipment in Yong Dong thermal power plant.

  • PDF