• Title/Summary/Keyword: plant endophyte

Search Result 58, Processing Time 0.022 seconds

Development and Optimization of Culture Medium for the Production of Glabridin by Aspergillus eucalypticola: An Endophytic Fungus Isolated from Glycyrrhiza glabra L. (Fabaceae)

  • Parisa Bahadori Ganjabadi;Mohsen Farzaneh ;Mohammad Hossein Mirjalili
    • Mycobiology
    • /
    • v.51 no.4
    • /
    • pp.230-238
    • /
    • 2023
  • Glabridin is a well-known active isoflavone found in the root of licorice (Glycyrrhiza glabra L.) that possess a wide range of biological activity. Plant cells, hairy roots, and fungal endophytes cultures are the most important alternative methods for plant resources conservation and sustainable production of natural compounds, which has received much attention in recent decades. In the present study, an efficient culture condition was optimized for the biomass accumulation and glabridin production from fungal endophyte Aspergillus eucalypticola SBU-11AE isolated from licorice root. Type of culture medium, range of pH, and licorice root extract (as an elicitor) were tested. The results showed that the highest and lowest biomass production was observed on PCB medium (6.43 ± 0.32 g/l) and peptone malt (5.85 + 0.11 g/l), respectively. The medium culture PCB was produced the highest level of glabridin (7.26 ± 0.44 mg/l), while the lowest level (4.47 ± 0.02 mg/l) was obtained from the medium peptone malt. The highest biomass (8.51 ± 0.43 g/l) and glabridin (8.30 ± 0.51 mg/l) production were observed from the PCB medium adjusted with pH = 6, while the lowest value of both traits was obtained from the same medium with pH = 7. The highest production of total glabridin (10.85 ± 0.84 mg/l) was also obtained from the culture medium treated with 100 mg/l of the plant root extract. This information can be interestingly used for the commercialization of glabridin production for further industrial applications.

Antibacterial and Antitumor Macrolides from Streptomyces sp. Is9131

  • Zhao Pei-Ji;Fan Li-Ming;Li Guo-Hong;Zhu Na;Shen Yue-Mao
    • Archives of Pharmacal Research
    • /
    • v.28 no.11
    • /
    • pp.1228-1232
    • /
    • 2005
  • Four compounds, including two novel macrolides, were isolated from an endophyte Streptomyces sp. Is9131 of Maytenus hookeri. Spectral data indicated that these compounds were dimeric dinactin (1), dimeric nonactin (2), cyclo-homononactic acid (3), and cyclo-nonactic acid (4). Bioassay results showed that dimeric dinactin had strong antineoplastic activity and antibacterial activity.

Assembly and Function of Seed Endophytes in Response to Environmental Stress

  • Yong-Lan Wang;Han-Bo Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1119-1129
    • /
    • 2023
  • Seeds are colonized by diverse microorganisms that can improve the growth and stress resistance of host plants. Although understanding the mechanisms of plant endophyte-host plant interactions is increasing, much of this knowledge does not come from seed endophytes, particularly under environmental stress that the plant host grows to face, including biotic (e.g., pathogens, herbivores and insects) and abiotic factors (e.g., drought, heavy metals and salt). In this article, we first provided a framework for the assembly and function of seed endophytes and discussed the sources and assembly process of seed endophytes. Following that, we reviewed the impact of environmental factors on the assembly of seed endophytes. Lastly, we explored recent advances in the growth promotion and stress resistance enhancement of plants, functioning by seed endophytes under various biotic and abiotic stressors.

Growth Promoting Rhizospheric and Endophytic Bacteria from Curcuma longa L. as Biocontrol Agents against Rhizome Rot and Leaf Blight Diseases

  • Vinayarani, G.;Prakash, H.S.
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.218-235
    • /
    • 2018
  • Plant growth promoting rhizobacteria and endophytic bacteria were isolated from different varieties of turmeric (Curcuma longa L.) from South India. Totally 50 strains representing, 30 PGPR and 20 endophytic bacteria were identified based on biochemical assays and 16S rDNA sequence analysis. The isolates were screened for antagonistic activity against Pythium aphanidermatum (Edson) Fitzp., and Rhizoctonia solani Kuhn., causing rhizome rot and leaf blight diseases in turmeric, by dual culture and liquid culture assays. Results revealed that only five isolates of PGPR and four endophytic bacteria showed more than 70% suppression of test pathogens in both assays. The SEM studies of interaction zone showed significant ultrastructural changes of the hyphae like shriveling, breakage and desication of the pathogens by PGPR B. cereus (RBacDOB-S24) and endophyte P. aeruginosa (BacDOB-E19). Selected isolates showed multiple Plant growth promoting traits. The rhizome bacterization followed by soil application of B. cereus (RBacDOB-S24) showed lowest Percent Disease Incidence (PDI) of rhizome rot and leaf blight, 16.4% and 15.5% respectively. Similarly, P. aeruginosa (BacDOB-E19) recorded PDI of rhizome rot (17.5%) and leaf blight (17.7%). The treatment of these promising isolates exhibited significant increase in plant height and fresh rhizome yield/plant in comparison with untreated control under greenhouse condition. Thereby, these isolates can be exploited as a potential biocontrol agent for suppressing rhizome rot and leaf blight diseases in turmeric.

A Leaf-Inhabiting Endophytic Bacterium, Rhodococcus sp. KB6, Enhances Sweet Potato Resistance to Black Rot Disease Caused by Ceratocystis fimbriata

  • Hong, Chi Eun;Jeong, Haeyoung;Jo, Sung Hee;Jeong, Jae Cheol;Kwon, Suk Yoon;An, Donghwan;Park, Jeong Mee
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.488-492
    • /
    • 2016
  • Rhodococcus species have become increasingly important owing to their ability to degrade a wide range of toxic chemicals and produce bioactive compounds. Here, we report isolation of the Rhodococcus sp. KB6, which is a new leaf-inhabiting endophytic bacterium that suppresses black rot disease in sweet potato leaves. We determined the 7.0 Mb draft genome sequence of KB6 and have predicted 19 biosynthetic gene clusters for secondary metabolites, including heterobactins, which are a new class of siderophores. Notably, we showed the first internal colonization of host plants with Rhodococcus sp. KB6 and discuss its potential as a biocontrol agent for sustainable agriculture.

Screening of Taxol-producing Endophytic Fungi from Ginkgo biloba and Taxus cuspidata in Korea

  • Kim, Soo-Un;Strobel, Gary;Ford, Eugene
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.2
    • /
    • pp.97-99
    • /
    • 1999
  • Endophytic fungi from Ginkgo biloba and Taxus cuspidata in Korea were screened for production of taxol. Eighteen and twelve fungal isolates from G. biloba and T. cuspidata, respectively, were shown to produce immunologically detectable amount of taxol. The highest production of taxol at 260 ng/l was achieved by stationary culture of an Alternaria isolate from G. biloba. The strain also produced unidentified antifungal agent(s) against Pythium ultimum. However, the activity gradually decreased when the strain was stored at $4^{\circ}C$ for 6 months.

  • PDF

Isolation of Symbiotic Frankia EuIK1 Strain from Root Nodule of Elaeagnus umbellata (보리수나무 뿌리혹으로부터 Frankia EuIK1 공생균주의 분리)

  • 김성천
    • Journal of Plant Biology
    • /
    • v.36 no.2
    • /
    • pp.177-182
    • /
    • 1993
  • The root nodules of Elaeagnus umbellata were coralloid-shape due to repeated dichotomous branching of nodule meristem. The filamentous endophyte with vesicle cluster ranging from 30 ${\mu}{\textrm}{m}$ to 60 ${\mu}{\textrm}{m}$ in diameter was present only in the cortical cells. The isolated endophytes in vitro culture showed typical Frankia morphology, consisting of highly branched hyphae ranging from 0.8 ${\mu}{\textrm}{m}$ to 1.0 ${\mu}{\textrm}{m}$ in diameter, terminal and intrahyphal sporangia varing in shape and size up to 60 ${\mu}{\textrm}{m}$ in length and laminated vesicles. Its infectivity and effectivity were confirmed by induction of nitrogen-fixing root nodules on the inoculated seedlings of two Elaeagnus species. Consequently, the isolate was confirmed as a true symbiont of Elaeagnus umbellata root nodule and named Frankia EuIK1.

  • PDF

Draft Genome Sequence of Alternaria alternata JS-1623, a Fungal Endophyte of Abies koreana

  • Park, Sook-Young;Jeon, Jongbum;Kim, Jung A.;Jeon, Mi Jin;Jeong, Min-Hye;Kim, Youngmin;Lee, Yerim;Chung, Hyunjung;Lee, Yong-Hwan;Kim, Soonok
    • Mycobiology
    • /
    • v.48 no.3
    • /
    • pp.240-244
    • /
    • 2020
  • Alternaria alternata JS-1623 is an endophytic fungus isolated from a stem tissue of Korean fir, Abies koreana. Ethyl acetate extracts of culture filtrates exhibited anti-inflammatory activity in LPS induced microglia BV-2 cell without cytotoxicity. Here we report a 33.67 Mb sized genome assembly of JS-1623 comprised of 13 scaffolds with N50 of 4.96 Mb, and 92.41% of BUSCO completeness. GC contents were 50.97%. Of the 11,197 genes annotated, gene families related to the biosynthesis of secondary metabolites or transcription factors were identified.

Identification and Characterization of Pathogenic and Endophytic Fungal Species Associated with Pokkah Boeng Disease of Sugarcane

  • Hilton, Angelyn;Zhang, Huanming;Yu, Wenying;Shim, Won-Bo
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.238-248
    • /
    • 2017
  • Pokkah Boeng is a serious disease of sugarcane, which can lead to devastating yield losses in crop-producing regions, including southern China. However, there is still uncertainty about the causal agent of the disease. Our aim was to isolate and characterize the pathogen through morphological, physiological, and molecular analyses. We isolated sugarcane-colonizing fungi in Fujian, China. Isolated fungi were first assessed for their cell wall degrading enzyme capabilities, and five isolates were identified for further analysis. Internal transcribed spacer sequencing revealed that these five strains are Fusarium, Alternaria, Phoma, Phomopsis, and Epicoccum. The Fusarium isolate was further identified as F. verticillioides after Calmodulin and EF-$1{\alpha}$ gene sequencing and microscopic morphology study. Pathogenicity assay confirmed that F. verticillioides was directly responsible for disease on sugarcane. Co-inoculation of F. verticillioides with other isolated fungi did not lead to a significant difference in disease severity, refuting the idea that other cellulolytic fungi can increase disease severity as an endophyte. This is the first report characterizing pathogenic F. verticillioides on sugarcane in southern China.