• Title/Summary/Keyword: plant cell wall

Search Result 335, Processing Time 0.028 seconds

Enzymatic Characteristics and Applications of Microbial Chitin Deacetylases (미생물 Chitin Deacetylase의 특성과 응용)

  • Kuk Ju-Hee;Jung Woo-Jin;Kim Kil-Yong;Park Ro-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • Chitin deacetylase (CDA; EC 3.5.1.41) catalyzes the hydrolysis of N-acetamide bonds of chitin, converting it to chitosan. Chitosan has several applications in areas such as biomedicine, food ingredients, cosmetics, pharmaceuticals, and agriculture. In this paper, occurrence, assay and purification protocols, enzymatic characteristics, substrate specificity, and mode of action of microbial CDAs have been described. Several lines of evidence have substantiated the biological roles involved in cell wall formation and plant-pathogen interactions for fungal CDAs. The gene structure of CDAs has been compared with other family 4 carbohydrate esterases which deacetylate a wide variety of acetylated poly/oligo-saccharides. The use of CDAs for the conversion of chitin to chitosan, in contrast to the presently used chemical procedure, offers the possibility of a controlled, non-degradable process, resulting in the production of well-defined chitosan oligomers and polymers. Insect pathogen that can secrete high levels of chitin-metab­olizing enzymes including CDA can be a possible alternative for new pest management tools.

Halobacillus blutaparonensis sp. nov., a Moderately Halophilic Bacterium Isolated from Blutaparon portulacoides Roots in Brazil

  • Barbosa Deyvison Clacino;Bae Jin-Woo;Weid Irene Von Der;Vaisman Natalie;Nam Young-Do;Chang Ho-Won;Park Yong-Ha;Seldin Lucy
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1862-1867
    • /
    • 2006
  • A moderately halophilic, Gram-positive, spore-forming bacterium was isolated from the roots of Blutaparon portulacoides, a plant found in sandy soil parallel to the beach line in Restinga de Jurubatiba, Rio de Janeiro, Brazil. The strain, designated $M9^T$, was motile and strictly aerobic with rod-shaped cells. It grew in the absence of NaCl and up to 20% NaCl, and was able to hydrolyze casein and starch. Strain $M9^T$ had a cell-wall peptidoglycan based on L-Orn-D-Asp, the predominant menaquinone present was menaquinone-7 (MK-7), diaminopimelic acid was not found, and anteiso-$C_{15:0}$ and iso-$C_{15:0}$ were the major fatty acids. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain $M9^T$ belonged to the genus Halobacillus and exhibited 16S rRNA gene similarity levels of 97.8-99.4% with the type strains of the other nine Halobacillus species. The DNA-DNA relatedness of strain $M9^T$ with H. trueperi, the closest relative as regards 16S rRNA gene similarity, and H. locisalis was 21% and 18%, respectively. Therefore, on the basis of phenotypic, genotypic, and phylogenetic data, strain $M9^T$ (=ATCC BAA-$1217^T$, =CIP $108771^T$, =KCTC $3980^T$) should be placed in the genus Halobacillus as a member of a novel species, for which the name Halobacillus blutaparonensis sp. nov. is proposed.

Mutation of Cellulose Synthase Gene Improves the Nutritive Value of Rice Straw

  • Su, Yanjing;Zhao, Guoqi;Wei, Zhenwu;Yan, Changjie;Liu, Sujiao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.800-805
    • /
    • 2012
  • Rice straw is an important roughage resource for ruminants in many rice-producing countries. In this study, a rice brittle mutant (BM, mutation in OsCesA4, encoding cellulose synthase) and its wild type (WT) were employed to investigate the effects of a cellulose synthase gene mutation on rice straw morphological fractions, chemical composition, stem histological structure and in situ digestibility. The morphological fractions investigation showed that BM had a higher leaf sheath proportion (43.70% vs 38.21%, p<0.01) and a lower leaf blade proportion (25.21% vs 32.14%, p<0.01) than WT. Chemical composition analysis showed that BM rice straw was significantly (p<0.01) higher in CP (crude protein), hemicellulose and acid insoluble ash (AIA) contents, but lower in dry matter (DM), acid detergent fiber (ADFom) and cellulose contents when compared to WT. No significant difference (p>0.05) was detected in neutral detergent fiber (NDFom) and ADL contents for both strains. Histological structure observation indicated that BM stems had fewer sclerenchyma cells and a thinner sclerenchyma cell wall than WT. The results of in situ digestion showed that BM had higher DM, NDFom, cellulose and hemicellulose disappearance at 24 or 48 h of incubation (p<0.05). The effective digestibility of BM rice straw DM and NDFom was greater than that of WT (31.4% vs 26.7% for DM, 29.1% vs 24.3% for NDFom, p<0.05), but the rate of digestion of the slowly digested fraction of BM rice straw DM and NDF was decreased. These results indicated that the mutation in the cellulose synthase gene could improve the nutritive value of rice straw for ruminants.

Increased Antifungal Activity with Genetic Development of Antagonistic Pseudomonas stutzeri YPL-1 against Fusariym solani (식물근부균 Fusarium Solani에 길항하는 생물방제균 Pseudomonas stutzeri YPL-1의 유전공학적 개발)

  • 임호성;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.4
    • /
    • pp.437-441
    • /
    • 1990
  • For the genetic development of more powerful antagonistic Pseudomom - YPL-1 as a biocontxol agent against soilborne plant pathogenic Fuaarium solani causing root rot of many important crops, mutants improving the productivity of chitinase were obtained by mutation with UV radiation or NTG treatment, P. stutzeri YPL-M26 (UV mutant) and P. stutzeri YPL-MI78 (NTG mutant) could improve the productivity of chitinase by 2.5 and 2.0 times, and its antifungal activity by 1.7 and 1.5 times, respectively. The antifungal mechanism of P. stutzeri YPL-M26 was caused by lysis of the fungal cell wall by hydrolytic enzymes such as chitinase. The antifungal activity of crude chitinase of P. stutzeri YPLM26 on the mycelial growth of F. solani was observed to be much higher than that of the original strain. The enzymes produced by P. stutzeri YPL-M26 were the same as the original strain in enzymatic properties such as optimal pH and temperature.

  • PDF

STUDY ON THE POTENTIALITY OF DUCKWEEDS AS A FEED FOR CATTLE

  • Huque, K.S.;Chowdhury, S.A.;Kibria, S.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.2
    • /
    • pp.133-137
    • /
    • 1996
  • Duckweed, an aquatic plant of the family Lemnaceae, is a rich source of protein and also contains cell wall materials. Spirodela, Lemna and Wolffia, the most available species of duckweeds were evaluated in terms of their chemical composition, the rate and extent of digestion of their dry matter(DM) and crude protein(CP) in the rumen and also their acceptability to the cattle. The three species contained CP of 284, 399 and $299g{\cdot}kg^{-1}$ DM, respectively; NDF of 471, 574 and $476g{\cdot}kg^{-1}$ DM, respectively; ADF of 215, 203 and $227g{\cdot}kg^{-1}$ DM, respectively. The rumen digestibilities of DM of the three species for 24 h were 410, 570 and $731g{\cdot}kg^{-1}$ DM, respectively and of CP were 528, 740 and $778g{\cdot}kg^{-1}$ DM, respectively. The rates of digestion of DM of the three duckweeds were 2.22, 3.63 and $5.73%h^{-1}$, respectively and of CP were 5.14, 4.22 and $6.05%h^{-1}$, respectively. Similarly, the extent of digestion of DM were 853, 723 and $926g{\cdot}kg^{-1}$ DM, respectively and of CP were 801, 874 and $943g{\cdot}kg^{-1}$ DM, respectively. Mixed duckweeds as a component of a concentrate mixture were eaten by the cattle at the rate of 10% of their live weights. It may be concluded that the dry matter and crude protein of the available duckweeds wee highly degradable in the rumen and may be fed to cattle mixing with concentrates. For the effective utilization of duck weeds as cattle feed their effect on the rumen digestion kinetics of a roughage diet need to be studied carefully.

Cloning of celC, Third Cellulase Gene, from Pectobacterium carotovorum subsp. carotovorum LY34 and its Comparison to Those of Pectobacterium sp.

  • LIM WOO JIN;RYU SUNG KEE;PARK SANG RYEOL;KIM MIN KEUN;AN CHANG LONG;HONG SU YOUNG;SHIN EUN CHULE;LEE JONG YEOUL;LIM YONG PYO;YUN HAN DAE
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.302-309
    • /
    • 2005
  • Phytopathogenic Pectobacterium carotovorum subsp. carotovorum (Pcc) LY34 secretes multiple isozymes of the plant cell wall degrading enzyme endoglucanases. We have cloned a third cel gene encoding CMCase from Pcc LY34. The structural organization of the celC gene (AY188753) consisted of an open reading frame (ORP) of 1,116 bp encoding 371 amino acid residues with a signal peptide of 22 amino acids within the NH$_2$-terminal region of pre-CelC. The predicted amino acid sequence of CelC was similar to that of Peetobaeterium ehrysanthemi Cel8Y (AF282321). The CelC has the conserved region of the glycoside hydrolase family 8. The apparent molecular mass of CelC was calculated to be 39 kDa by CMC-SDS-PAGE. The cellulase­minus mutant of Pee LY34 was as virulent as the wild-type in pathogenicity tests on tubers of potato. The results suggest that the CelC of Pce LY34 is a minor factor for the pathogenesis of soft-rot.

Durability of the Expanded Rice Hull as a Hydroponic Culture Medium (양액재배용 팽연화 왕겨의 적정 사용기간)

  • 임상현;김경희;안문섭;유근창
    • Journal of Bio-Environment Control
    • /
    • v.10 no.2
    • /
    • pp.106-110
    • /
    • 2001
  • In an effort to evaluate the economic value and durability of the expanded rice hull as substrates, changes in the physical and chemical properties of material and plant growth in that substrate were studied. Using and electron microscope, the structure of used and new expanded rice hull substrate was examined. Considerable decomposition was found in the substrate which had been used one to three times. Compactness and lowered porosity in the used substrates were probably caused by decomposition. The results of cation analysis showed the possible destruction of cell wall of rice hulls. Abundant $Ca^{2+}$ in the substrates used for two to three times also indicated the possibility of decomposition. In tomato yield comparison, 15.2% more yield of tomato fruit in a new substrates indicated the negative effects of decomposition of one-time used substrates. Yield decreased in the substrates used for three times. if perlite substrates is used for three years before renewal and the cost of the perlite renewal is counted. 65.3% saving in the cost will be realized with the use of an expanded rice hull substrate. Another positive effect of the expanded rice hull substrate is the decrease of environmental contamination.n.

  • PDF

Characterization of Tofu-Residue Hydrolyzing Carbohydrase Isolated from Aspergillus niger CF-34 (Aspergillus niger CF-34로부터 분리한 두부 또는 두유비지 가용화 복합효소의 특성)

  • Kim, Kang-Sung;Sohn, Heon-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.490-495
    • /
    • 1994
  • Enzymatic solubilization of tofu-residue was attempted using carbohydrase isolated from Aspergillus niger CF-34. Tofu-residue, by-product of tofu manufacture or soymilk processing was used as the model for plant cell wall. It was found that tofu-residue was rich in nurients: 46.7% carbohydrate, 32.8% protein, the rest being lipid and ashes. Carbohydrate component of tofu-residue consisted of 36.8% cellulose and 62.6% hemicellulose. The carbohydrase was found to consist of pectinase, xylanase, PGase, CMCase, and SFase when tofu-residue and pectin were used as the carbon source. Enzyme induction was maximum at 7days of culture. Optimum reaction pH was 4.0, temperature $50^{\circ}C$. The enzyme was stable to $50^{\circ}C$, above which the stability decreased rapidly.

  • PDF

Bioconversion of Lignocellulosic Materials with the Contribution of a Multifunctional GH78 Glycoside Hydrolase from Xylaria polymorpha to Release Aromatic Fragments and Carbohydrates

  • Liers, Christiane;Ullrich, Rene;Kellner, Harald;Chi, Do Huu;Quynh, Dang Thu;Luyen, Nguyen Dinh;Huong, Le Mai;Hofrichter, Martin;Nghi, Do Huu
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1438-1445
    • /
    • 2021
  • A bifunctional glycoside hydrolase GH78 from the ascomycete Xylaria polymorpha (XpoGH78) possesses catalytic versatility towards both glycosides and esters, which may be advantageous for the efficient degradation of the plant cell-wall complex that contains both diverse sugar residues and esterified structures. The contribution of XpoGH78 to the conversion of lignocellulosic materials without any chemical pretreatment to release the water-soluble aromatic fragments, carbohydrates, and methanol was studied. The disintegrating effect of enzymatic lignocellulose treatment can be significantly improved by using different kinds of hydrolases and phenoloxidases. The considerable changes in low (3 kDa), medium (30 kDa), and high (> 200 kDa) aromatic fragments were observed after the treatment with XpoGH78 alone or with this potent cocktail. Synergistic conversion of rape straw also resulted in a release of 17.3 mg of total carbohydrates (e.g., arabinose, galactose, glucose, mannose, xylose) per gram of substrate after incubating for 72 h. Moreover, the treatment of rape straw with XpoGH78 led to a marginal methanol release of approximately 17 ㎍/g and improved to 270 ㎍/g by cooperation with the above accessory enzymes. In the case of beech wood conversion, the combined catalysis by XpoGH78 and laccase caused an effect comparable with that of fungal strain X. polymorpha in woody cultures concerning the liberation of aromatic lignocellulose fragments.

Complete genome sequence of Cohnella sp. HS21 isolated from Korean fir (Abies koreana) rhizospheric soil (구상나무 근권 토양으로부터 분리된 Cohnella sp. HS21의 전체 게놈 서열)

  • Jiang, Lingmin;Kang, Se Won;Kim, Song-Gun;Jeong, Jae Cheol;Kim, Cha Young;Kim, Dae-Hyuk;Kim, Suk Weon;Lee, Jiyoung
    • Korean Journal of Microbiology
    • /
    • v.55 no.2
    • /
    • pp.171-173
    • /
    • 2019
  • The genus Cohnella, which belongs to the family Paenibacillaceae, inhabits a wide range of environmental niches. Here, we report the complete genome sequence of Cohnella sp. HS21, which was isolated from the rhizospheric soil of Korean fir (Abies koreana) on the top of Halla Mountain in the Republic of Korea. Strain HS21 features a 7,059,027 bp circular chromosome with 44.8% GC-content. Its genome contains 5,939 protein-coding genes, 78 transfer RNA (tRNA) genes, 27 ribosomal RNA (rRNA) genes, 4 noncoding RNA genes (ncRNA), and 90 pseudogenes. The bacterium contains antibiotic-related gene clusters and genes encoding plant cell wall-degrading enzymes.