• Title/Summary/Keyword: plant cell wall

Search Result 336, Processing Time 0.025 seconds

Characterization of Novel Trichoderma asperellum Isolates to Select Effective Biocontrol Agents Against Tomato Fusarium Wilt

  • El_Komy, Mahmoud H.;Saleh, Amgad A.;Eranthodi, Anas;Molan, Younes Y.
    • The Plant Pathology Journal
    • /
    • v.31 no.1
    • /
    • pp.50-60
    • /
    • 2015
  • The use of novel isolates of Trichoderma with efficient antagonistic capacity against Fusarium oxysporum f. sp. lycopersici (FOL) is a promising alternative strategy to pesticides for tomato wilt management. We evaluated the antagonistic activity of 30 isolates of T. asperellum against 4 different isolates of FOL. The production of extracellular cell wall degrading enzymes of the antagonistic isolates was also measured. The random amplified polymorphic DNA (RAPD) method was applied to assess the genetic variability among the T. asperellum isolates. All of the T. asperellum isolates significantly reduced the mycelial growth of FOL isolates but the amount of growth reduction varied significantly as well. There was a correlation between the antagonistic capacity of T. asperellum isolates towards FOL and their lytic enzyme production. Isolates showing high levels of chitinase and ${\beta}$-1,3-glucanase activities strongly inhibited the growth of FOL isolates. RAPD analysis showed a high level of genetic variation among T. asperellum isolates. The UPGMA dendrogram revealed that T. asperellum isolates could not be grouped by their antagonistic behavior or lytic enzymes production. Six isolates of T. asperellum were highly antagonistic towards FOL and potentially could be used in commercial agriculture to control tomato wilt. Our results are consistent with the conclusion that understanding the genetic variation within Trichoderma isolates and their biochemical capabilities are required for the selection of effective indigenous fungal strains for the use as biocontrol agents.

Identification of Plant Factors Involving in Agrobacterium-mediated Plant Transformation

  • Nam, Jaesung
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.5
    • /
    • pp.387-393
    • /
    • 2000
  • The process by which Agrobacterium tumefaciens genetically transforms plants involves a complex series of reactions communicated between the pathogen and the plants. To identify plant factors involved in agrobacterium-mediated plant transformation, a large number of T-DNA inserted Arabidopsis thaliana mutant lines were investigated for susceptibility to Agrobacterium infection by using an in vitro root inoculation assay. Based on the phenotype of tumorigenesis, twelve T-DNA inserted Arabidopsis mutants(rat) that were resistant to Agrobacterium transformation were found. Three mutants, rat1, rat3, and rat4 were characterized in detail. They showed low transient GUS activity and very low stable transformation efficiency compared to the wild-type plant. The resistance phenotype of rat1 and rats resulted from decreased attachment of Agrobacterium tumefaciens to inoculated root explants. They may be deficient in plant actors that are necessary for bacterial attachment to plant cells. The disrupted genes in rat1, rat3, and rat4 mutants were coding a arabinogalactan protein, a likely cell wall protein and a cellulose synthase-like protein, respectively.

  • PDF

Microstructure of Perigynium and Achene Surfaces of Carex sect. Sideroxtictae in Korea

  • Oh, Yong-Cha
    • Journal of Plant Biology
    • /
    • v.39 no.2
    • /
    • pp.137-144
    • /
    • 1996
  • Scanning electron microscope revealed several taxonomically useful characters in the perigynium and achene epidermis of sect. Siderosticatae (Carex siderosticta, C. ciliatomarginata and C. okamotoi). Mocroscopic characters such as perigynium shape, hair presence or absence, beak shape, nodule situation in perigynium, achene shape, cell wall and silica cone in achene were useful in Carex at the species levels. A key was presented on the basis of features obtained from the examinations.

  • PDF

Determination of the Period of the Formation and Size of Sieve Element Area and Sieve Pore (Streptanthus tortus 조직배양 세포에서 사공의 형성시기와 사공 영역과 사공의 크기 결정)

  • Cho, Bong-Heuy
    • Journal of Plant Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.41-44
    • /
    • 2002
  • During the phloem development from parenchyma cells in a suspension culture of Streptanthus induced sucrose carrier and glucose carrier disappeared. Sieve element area and sieve pore induced suspension culture of Streptanthus were formed almost at the last period of the synthesis of sieve endoplasmic reticulum (SER) and p-protein. The new synthesized cell wall begann to digeste only after the new cell wall was surrounded by SER. The digested region of the cell wall and the formed region of sieve pore were regular comparatively. The completed sieve pore was an oval form, and the outer portion of sieve pore varied, ca 1.2 ${\mu}{\textrm}{m}$~1.6 ${\mu}{\textrm}{m}$ in longitudinal, 0.8 ${\mu}{\textrm}{m}$~1.3 ${\mu}{\textrm}{m}$ in tangential, and the inner size of sieve pore was irregular form of a star-like shape. The number of sieve pore between sieve cells was ca 2~7 per ${\mu}{\textrm}{m}$$^2$ and the sieve pore wall with callose was 0.05 ${\mu}{\textrm}{m}$~0.07 ${\mu}{\textrm}{m}$ in thickness. The energy for the formation of sieve element area and sieve pore might be supplied by mitochondria near the new cell wall and the role of SER remains to be illucidated.

Molecular Identification, Enzyme Assay, and Metabolic Profiling of Trichoderma spp.

  • Bae, Soo-Jung;Park, Young-Hwan;Bae, Hyeun-Jong;Jeon, Junhyun;Bae, Hanhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1157-1162
    • /
    • 2017
  • The goal of this study was to identify and characterize selected Trichoderma isolates by metabolic profiling and enzyme assay for evaluation of their potential as biocontrol agents against plant pathogens. Trichoderma isolates were obtained from the Rural Development Administration Genebank Information Center (Wanju, Republic of Korea). Eleven Trichoderma isolates were re-identified using ribosomal DNA internal transcribed spacer (ITS) regions. ITS sequence results showed new identification of Trichoderma isolates. In addition, metabolic profiling of the ethyl acetate extracts of the liquid cultures of five Trichoderma isolates that showed the best anti-Phytophthora activities was conducted using gas chromatography-mass spectrometry. Metabolic profiling revealed that Trichoderma isolates shared common metabolites with well-known antifungal activities. Enzyme assays indicated strong cell wall-degrading enzyme activities of Trichoderma isolates. Overall, our results indicated that the selected Trichoderma isolates have great potential for use as biocontrol agents against plant pathogens.

A Study on Structure and Differentiation of Seed Coat of Panax ginseng C.A. Meyer (인삼(Panax ginseng C.A. Meyer) 종피의 구조 및 분화에 관한 연구)

  • 김우갑
    • Journal of Plant Biology
    • /
    • v.29 no.4
    • /
    • pp.295-315
    • /
    • 1986
  • Structure and differentiation mechanism of the seed coat of Panax ginseng are studied with light and electron microscopes to clarify the developmental processes of seed coat and the structural changes during the differentiation of the seed. The seed coat of ginseng is differentiated from the inner cell layers of ovary wall, which can be compared with the seed coat differentiated from integument(s) in other plants. The single integument is differentiated into endothelium, which is degenerated to one layer of 4${\mu}{\textrm}{m}$ in thickness, composed of remants of cell wall components in fully ripened seed. The ripened seed coat is composed of three layers; fringe layer, inner layer and palisade layer, and all of the them are crossed at right angles with one another. This may be the cause of protection of the kernel from other mechanical injuries. The thickness of fully ripened seed coat is about 300~600 ${\mu}{\textrm}{m}$, and arrangements of sclereids are irregular. However, the raphe region of seed coat is thin about 200 ${\mu}{\textrm}{m}$ in thickness and sclereids in that region are arranged regularly. This is the important cause for the cleavage of the seed coat during post-maturation process. The vascular bundles on the raphe are still remaining after sarcocarps are removed, and one of the branches of vascular bundles entered into the seed coat through the hilum and extended to chalazal region. During post-maturation process, the supply of water being necessary for growth of embryo may be accompolished by the vascular bundles entered into the seed coat through the opened hilum.

  • PDF

Formation of Sieve Element Area and Sieve Pore in Suspension Cultures of Streptanthus tortus (Streptanthus tortus 조직배양 세포에서 사부 영역과 사공의 형성)

  • 조봉희
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.2
    • /
    • pp.109-112
    • /
    • 2001
  • Sieve element area and sieve pore formed generally from plasmodesmata. Sieve pore formed by the fusion of several tiny vesicles with plasmodesmata, or those with cell wall after the destruction of special region of newly formed cell wall or those finally with circular arranged form from tissure culture of Streptanthus. The tiny vesicles were produced from dispersed nucleolus or heterochromatin. The sieve area and sieve pore formed from tissue cultured cells were shown round tube form similar to those of natural plants. Sieve area and sieve pore were produced by various methods, and it suggested that the basic materials of the construction of sieve pore originated from the vesicles.

  • PDF

A Study on the Petal Micromorphological Characteristics of the Tribe Sorbarieae (Rosaceae) (쉬땅나무족(장미과) 화판표피의 미세형태학적 특성에 관한 연구)

  • Song, Jun-Ho;Hong, Suk-Pyo
    • Korean Journal of Plant Resources
    • /
    • v.29 no.4
    • /
    • pp.376-384
    • /
    • 2016
  • A comparative petal micromorphology of 15 taxa of tribe Sorbarieae was carried out using scanning electron microscopy (SEM) in order to evaluate their taxonomic and systematic implication. The characteristics of both adaxial and abaxial side of petal epidermal cells such as shape, arrangement, anticlinal wall and cuticular sculpture were described in detail. The Sorbarieae petal epidermal cells were identified as papillate or conical papillate (PCS) and rectangular-rugose tabular (TRS). Three types of petal micromorphology were found within the tribe based on the cell patterns of adaxial and abaxial side. Type I. PCS-TRS, Type II. PCS-PCS, Type III. TRS-TRS (adaxial-abaxial side). The petal epidermal cell types, anticlinal cell wall, and cuticular sculpture represent not only taxonomical importance for identification between or within the genera but also systematic implication. Moreover, this study provides a relation between petal epidermal cell pattern and insect pollinator (entomophily; melittophily) as an additional case.