• Title/Summary/Keyword: plant cell cultures

Search Result 288, Processing Time 0.022 seconds

Establishment of Cell Suspension Cultures and Plant Regeneration in White Dandelion (Taraxacum coreanum NAKAI.)

  • Sun, Yan-Lin;Kim, Jae-Hak;Hong, Soon-Kwan
    • Korean Journal of Plant Resources
    • /
    • v.24 no.3
    • /
    • pp.280-285
    • /
    • 2011
  • In this study, we established a novel somatic embryogenesis and plant regeneration system through cell suspension culture of white dandelion (Taraxacum coreanum NAKAI.). Embryogenic calli could be initiated from leaf and root explants of sterile seedlings on solid Murashige and Skoog (MS) medium supplemented with 1.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) after 3-week cultures. To proliferate embryogenic calli rapidly, cell suspension culture was performed with transferred to liquid MS medium with various combinations of plant growth regulators (PGRs) including 2,4-D, ${\alpha}$-naphthalene acetic acid (NAA), indole-3-acetic acid (IAA), $N^6$-benzylamino purine (BAP), thidiazuron (TDZ), and kinetin. During suspension cultures, embryogenic calli not only greatly proliferated, but shoot organogenesis also simultaneously occurred from the surface of somatic embryos. Among them, TDZ at lower concentration, 0.1 mg/L produced the highest efficiency of somatic embryo formation and shoot organogenesis. Rooting of embryogenic calli with adventitious shoots was done on solid MS medium containing 0.1 mg/L NAA and 0.3% activated carbon. Nearly 80% of embryogenic calli with shoot organogenesis could be rooted normal. Well-rooted plantlets were transferred into pots under a greenhouse condition, and plants derived from this system appeared phenotypically normal.

Developmental and Structural Diversity of Regenerated Plants in Cell and Tissue Cultures (세포조직배양계에서 재생된 식물의 발생 및 형태학적 다양성)

  • 소웅영
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1993.07a
    • /
    • pp.1-36
    • /
    • 1993
  • It is possible to regenerate plants from calli, single cells and protoplasts of numerous species via organogenasis or embryogenesis in cell and tissue culture systems. Also such regeneration of plants can directly occur from cells of explants. However certain plant species has not been yet provided cultures suitable for plant regeneration from cells or tissues. For example, we have to confirm the regenerability of plant from cells before preparing transformed cells for application. Even more, it is very important to notice that regenerated plants in cell and tissue cultures often show structural abnormality. The mojority of those plants is functionally disordered and eventually cases degenerated. One of such examples is vitreous plants which are manifested mainly in the leaves and manifesteds to a lesser extent in the stems and roots. Regenerants in suspension cultures show more frequent vitrification than on gelled media so that relative humidity and water potential are the key factors involved in abnormal morphogenesis in vitro. The other is that somatic embryos formed in media containing BAP or high concentration of sucrose show frequently cotyledon aberrancy such as polycotyledon and born type cotyledon. The embryos with aberrant cotyledon of Codonopsis lanceolata could not germinate or regenerate into plants in many cases. In contrast, the polycotyledon embryos of Aralia cordata germinated in higher percentage than two cotyledonary embryos, but horn type cotyledonary embryos rarely germinated. The major cause of poor germination is the abnormal development of plumule apex meristem.

  • PDF

Changes of Plant Cell Size Index by Culture Conditions (배양 조건에 따른 식물세포 크기 지수의 변화)

  • 김상목;박인석;이상윤;이규화;김동일
    • KSBB Journal
    • /
    • v.13 no.4
    • /
    • pp.438-443
    • /
    • 1998
  • Effects of various environmental factors on cell size index(FCW/DCW) in Thalictrum rugosum. Lithospermum erythrorhizon and Taxus cuspidata plant cell suspension cultures were investigated. Time course change of cell size index were also observed. In batch cultures, FCW/DCW increased according to the decrease of sugar concentration. For short-term experiment within 24 hr, FCW/DCW value could be reduced significantly by increasing sugar concentration. When an osmoticum such as mannitol was added, FCW/DCW converged to a low value. Therefore, it was confirmed that osmolality of the medium was important in determining cell size or water content of the cells. Inorganic salts or treatment with organic solvent also exhibited some effect on the cell size index. However, pH and centrifugal force did not show any influences. On the other hand, it was found that the addition of Pluronic F-68 reduced FCW/DCW. By combining these results effectively, it may be possible to increase the cell concentration in high density culture to a higher extent.

  • PDF

Increased lignan biosynthesis in the suspension cultures of Linum album by fungal extracts

  • Bahabadi, Sedigheh Esmaeilzadeh;Sharifi, Mozafar;Safaie, Naser;Murata, Jun;Yamagaki, Tohru;Satake, Honoo
    • Plant Biotechnology Reports
    • /
    • v.5 no.4
    • /
    • pp.367-373
    • /
    • 2011
  • Linum album accumulates anti-tumor podophyllotoxin (PTOX) and its related lignans, which were originally isolated from an endangered species Podophyllum. In the present study, we examined the effects of five fungal extracts on the production of lignans in L. album cell cultures. Fusarium graminearum extract induced the highest increase of PTOX [$143{\mu}g\;g^{-1}$ dry weight (DW) of the L. album cell culture], while Rhizopus stolonifer extract enhanced the accumulation of lariciresinol up to $364{\mu}g\;g^{-1}$ DW, instead of PTOX. Typical elicitors, such as chitin, chitosan, or methyl jasmonate (MeJA), were shown to be less effective in lignan production in L. album cell cultures. These results verified the advantages of fungal extracts to increase lignan production in L. album cell culture, and suggested potential on-demand metabolic engineering of lignan biosynthesis using differential fungal extracts.

Effectcs of Plant Growth Regulators on Growth and Berberine Production in Cell Suspension Cultures of Thalictrum rugosum (Thalictrum rugosum 세포배양에서 식물생장 조절물질이 세포증식 및 Berberine 생산에 미치는 영향)

  • 김동일
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.4
    • /
    • pp.327-330
    • /
    • 1990
  • The effects of various plant growth regulators, both auxins and cytokinins, on cell growth and berberine production were investigated in cell suspension cultures of Thafictrum rugosum. Indole-%-acetic acid (IAA) was found to be the best for berberine production among five examined plant growth regulators and the optimum concentration of IAA was 1 $\mu \textrm M$. The enhancement compared to control 2, 4-dichlorophenoxyacetic acid (2, 4-D) was more than 60%. Simultaneous addition of cytokinins such as kinetin and 6-benzylamiroyurine (BA) was inhibitory.

  • PDF

Estimation of Cellular Damages Caused by Paraquat and lead Using a Cell Culture System

  • Park, Young-Im;Noh, Eun-Woon;Han, Mu-Seok;Yi, Yong-Sub
    • Journal of Plant Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.83-88
    • /
    • 2001
  • A cell culture system of poplar (Populus alba x P.glandulosa) was established to test four different methods for evaluation of cellular stresses. Two different kinds of stresses were given to the cultures by adding either Pb(NO$_3$)$_2$ or paraquat and the cellular responses were monitored during a week period. While fresh weight reduction was observable in two days after the treatment of Pb(NO$_3$)$_2$, such changes were apparent only in later stage in paraquat treated cultures. Cells in paraquat treated cultures in the first 3 days showed no alteration in fresh weight as compared to untreated cultures, but had their MTT reducing activities completely inhibited. Neither Evans blue staining nor ion conductivity of the medium was consistent with fresh weight changes of the cultures. Overall, cell clumps formed during suspension culture appeared to interfere with staining and washing reactions and thus cause the assays unreliable. Among the four methods examined, fresh weight changes and MTT reducing activity appeared to be the most reliable and consistent.

  • PDF

High-yield Production of Functional Human Lactoferrin in Transgenic Cell Cultures of Siberian Ginseng(Acanthopanax senticosus)

  • Jo, Seung-Hyun;Kwon, Suk-Yoon;Park, Doo-Sang;Yang, Kyoung-Sil;Kim, Jae-Whune;Lee, Ki-Teak;Kwak, Sang-Soo;Lee, Haeng-Soon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.442-448
    • /
    • 2006
  • Human lactoferrin (hLf) is an iron-binding glycoprotein that has been considered to play many biological roles in the human, including the stimulation of the immune system, antimicrobial and anti-inflammatory effects, and regulation of iron absorption. We generated transgenic Siberian ginseng (Acanthopanax senticosus) cell cultures producing a functional hLf protein using the signal peptide sequence from the endoplasmic reticulum and driven by an oxidative stress-inducible SWPA2 promoter which is highly expressed in plant cell cultures. The production of hLf increased proportionally to cell growth and showed a maximal level (up to 3.6% of total soluble protein) at the stationary phase in suspension cultures. Full-length hLf protein was identified by immunoblot analysis in transgenic cell cultures of Siberian ginseng. Recombinant hLf (rhLf) was purified from suspension cells of Siberian ginseng by ammonium sulfate precipitation, cation-exchange and gel filtration chromatography. N-terminal sequences of rhLf were identical to native hLf (nhLf). The overall monosaccharide composition of rhLf showed the presence of plant specific xylose while sialic acid is absent. Antibacterial activity of purified rhLf was higher than that of nhLf. Taken together, we anticipate that medicinal Siberian ginseng cultured cells, as demonstrated by this study, will be a biotechnologically useful source for commercial production of functional hLf not requiring further purification.

Non-invasive Methods for Determination of Cellular Growth in Podophyllum hexandrum Suspension Cultures

  • Chattopadhyay, Saurabh;Bisaria, V.S.;Scheper, T.;Srivastava, A.K.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.6
    • /
    • pp.331-334
    • /
    • 2002
  • Culture conductivity and on-line NADH fluorescence were used to measure cellular growth in plant cell suspension cultures of Podophyllum hexandrum. An inverse correlation between dry cell weight and medium conductivity was observed during shake flask cultivation. A linear relationship between dry cell weight and culture NADH fluorescence was obtained during the exponential phase of batch cultivation In a bioreactor under the pH stat (pH 6) conditions. It was observed that conductivity measurement were suitable for biomass characterisation under highly dynamic uncontrolled shake flask cultivation conditions. However, if the acid/alkali feeding is done for pH control the conductivity measurement could not be applied. On the other hand the NADH fluorescence measurement allowed online-in situ biomass monitoring of rather heterogenous plant cell suspension cultures in bioreactor even under the most desirable pH stat conditions.

식물배양세포를 이용한 항산화연구

  • Kim, Gi-Yeon;Lee, Jeong-Eun;An, Yeong-Ok;Gwon, Seok-Yun;Lee, Haeng-Sun;Gwak, Sang-Su
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.65-68
    • /
    • 2000
  • To understand the antioxidative mechanism in plant cell cultures, we investigated the levels of antioxidant enzymes and low molecular antioxidants in 100 cell lines derived from different plant species. SOD and POD activities in plant cell lines were significantly higher than intact plants. The cell lines from sweet potato (Ipomoea batatas) and cassava (Manihot esculeanta) showed the highest POD and SOD activities, respectively, suggesting that the cell cultures of sweet potato and cassava are good biomaterials for the mass production and molecular study of antioxidant enzymes. The average ascorbate content in plant cell lines was several hundred times lower than intact plants, whereas the glutathione content was 2-3 times higher than plants. Interestingly, the ratio of reduced and oxidized ascorbate and glutathione was different from plant species. In conclusion, the results strongly suggest that plant cell cultures are good biomaterials for the study of antioxidative mechanism and the production of useful components including antioxidants.

  • PDF