• Title/Summary/Keyword: plant associations

Search Result 82, Processing Time 0.022 seconds

At Death's Door: Alternaria Pathogenicity Mechanisms

  • Lawrence, Christopher B.;Mitchell, Thomas K.;Craven, Kelly D.;Cho, Yang-Rae;Cramer, Robert A.;Kim, Kwang-Hyung
    • The Plant Pathology Journal
    • /
    • v.24 no.2
    • /
    • pp.101-111
    • /
    • 2008
  • The fungal genus Alternaria is comprised of many saprophytic and endophytic species, but is most well known as containing many notoriously destructive plant pathogens. There are over 4,000 Alternaria/host associations recorded in the USDA Fungal Host Index ranking the genus 10th among nearly 2,000 fungal genera based on the total number of host records. While few Alternaria species appear to have a sexual stage to their life cycles, the majority lack sexuality altogether. Many pathogenic species of Alternaria are prolific toxin producers, which facilitates their necrotrophic lifestyle. Necrotrophs must kill host cells prior to colonization, and thus these toxins are secreted to facilitate host cell death often by triggering genetically programmed apoptotic pathways or by directly causing cell damage resulting in necrosis. While many species of Alternaria produce toxins with rather broad host ranges, a closely-related group of agronomically important Alternaria species produce selective toxins with a very narrow range often to the cultivar level. Genes that code for and direct the biosynthesis of these host-specific toxins for the Alternaria alternata sensu lato lineages are often contained on small, mostly conditionally dispensable, chromosomes. Besides the role of toxins in Alternaria pathogenesis, relatively few genes and/or gene products have been identified that contribute to or are required for pathogenicity. Recently, the completion of the A. brassicicola genome sequencing project has facilitated the examination of a substantial subset of genes for their role in pathogenicity. In this review, we will highlight the role of toxins in Alternaria pathogenesis and the use of A. brassicicola as a model representative for basic virulence studies for the genus as a whole. The current status of these research efforts will be discussed.

Phylogeny, Morphology and Pathogenicity of Biscogniauxia mediterranea Causing Charcoal Canker Disease on Quercus brantii in Southern Iran

  • Samaneh, Ahmadi;Fariba, Ghaderi;Habiballah, Charehgani;Soraya, Karami;Dariush, Safaee
    • Research in Plant Disease
    • /
    • v.28 no.4
    • /
    • pp.209-220
    • /
    • 2022
  • Charcoal canker of oak, which has recently increased in southern Iran, could pose a serious threat to the entire forest ecosystem in the near future. In addition, it seems that climate change and its consequences, such as drought in the southern regions of Iran, have exacerbated this phenomenon. Consequently, the objective of this study was to identify the fungal pathogens that could cause charcoal canker disease in the oak forests of South Zagros. It was also sought to find associations between changes in the occurrence/exacerbation of charcoal canker disease under non and intense drought stress in non-inoculated or inoculated Quercus brantii seedlings. In total, 120 isolates were obtained from eight oak forests located in the Zagros Mountains of Southern Iran, Kohgiluyeh & Boyer-Ahmad and Fars provinces, which were classified as Biscogniauxia mediterranea based on morphological assessment. Subsequently, molecular assay confirmed the result by phylogenetic inference of internal transcribed spacer-rDNA regions, α-actin, and β-tubulin genes. The results of the pathogenicity test showed that the response of isolates of B. mediterranea (Iran-G1 and Iran-M70) was varied in different environments for the measured necrotic lesion length. In comparison with the control moisture treatments (non-stress), the necrotic lesion length in inoculated treatments increased under intense drought stress. In general, inoculated oak seedlings' exposure to water-deficient stress by the pathogen of B. mediterranea could affect the spread/severity of the charcoal canker disease.

Vegetation Structure and Ecological Restoration of Disturbed Forest due to Artificial Plant (인공식재에 의해 교란된 산림의 식생구조 및 생태적 복원기법)

  • Bae, Byung-Ho;Yoon, Yong-Han;Kim, Jeong-Ho
    • Journal of Environmental Science International
    • /
    • v.20 no.6
    • /
    • pp.701-710
    • /
    • 2011
  • The purpose of this study is to investigate the vegetation structure and ecological restoration of disturbed forest due to artificial plant. To this end, 12 plots were set up and surveyed. The result analyzed considering mean importance percentage(M.I.P) showed that the types were divided into three groups which are artificial planted forest type(three plots), natural forest-artificial planted forest type(four plots), natural forest type(five plots). Dominant proportion of artificial planted species were as follows: artificial planted forest type was over 60%, natural forest-artificial planted forest types were 14~49%. The range of Shannon's index of all associations was from 0.7131 to 0.7771(natural forest-artificial planted forest > natural forest > artificial planted forest). Also we suggested restoration method of vegetation for ecological value as follow: Control of density considering step and Remove of Pinus koraiensis seedlings of understory layer and shurb layer.

Cadmium Accumulation, Phosphorus Concentration and Growth Response of Cd-treated Ectomycorrhizal Poplar Cuttings

  • Han, Sim-Hee;Kim, Du-Hyun;Aggangan, Nelly S.;Kim, Pan-Gi;Lee, Kyung Joon
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.5
    • /
    • pp.602-608
    • /
    • 2009
  • We investigated whether cadmium (Cd) toxicity affects phosphorus (P) concentration and growth of poplar, which might be related to the ectomycorrhizal associations. Populus ${\times}$tomentoglandulosa cuttings were treated with 0.1 mM and 0.4 mM $CdSO_4$ and inoculated with ectomycorrhizal fungus, Pisolithus tinctorius (Pt) and grown in autoclaved peat vermiculite mixture for five months under greenhouse conditions. Ectomycorrhizal plants showed significantly higher Cd concentration in leaves, stems and roots than in non-mycorrhizal plants. Likewise, P contents in leaves and roots of ectomycorrhizal plants were higher than those of non-mycorrhizal plants. Acid phosphatase activity in leaves of ectomycorrhizal plants, however, was significantly lower than that of non-mycorrhizal plants. 0.1 mM Cd significantly increased P content in leaves and stems of non-mycorrhizal plants. In spite of high P concentration, which is accompanied by lower acid phosphatase activity, plant growth was not improved by inoculation with P. tinctorius. Total plant dry weight was lower than the non-mycorrhizal counterpart. The results imply that this might be caused by the large amount of energy consumption to alleviate Cd toxicity resulted from high Cd accumulation in their tissues.

Stable Microbial Community and Specific Beneficial Taxa Associated with Natural Healthy Banana Rhizosphere

  • Fu, Lin;Ou, Yannan;Shen, Zongzhuan;Wang, Beibei;Li, Rong;Shen, Qirong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1624-1628
    • /
    • 2019
  • Banana planting altered microbial communities and induced the enrichment of Fusarium oxysporum in rhizosphere compared with that of forest soil. Diseased plant rhizosphere soil (WR) harbored increased pathogen abundance and showed distinct microbial structures from healthy plant rhizosphere soil (HR). The enriched taxon of Bordetella and key taxon of Chaetomium together with some other taxa showed negative associations with pathogen in HR, indicating their importance in pathogen inhibition. Furthermore, a more stable microbiota was observed in HR than in WR. Taken together, the lower pathogen abundance, specific beneficial microbial taxa and stable microbiota contributed to disease suppression.

INVESTIGATION REPORT ON PLANT COMMUNITIES ON YONGZONG ISLAND (영종도의 식물군락연구)

  • 홍원식
    • Journal of Plant Biology
    • /
    • v.1 no.2
    • /
    • pp.7-15
    • /
    • 1958
  • 1. The author investigated on the flora of Yongzong island especially on the point of view of the sociological studies. 2. The author could distinguish kinds of the plant formtion in this island(1). Seaside plant formation (2). Mountain plant formation. 3. The seaside plant formation could be subdivided as follows: (1). Association of Triglochin maritimum LINNE. (2). Association of Suaeda japonica MAKINO. (3). Association of Scirpus triqueter LINNE. (4) Association of Phragmites prosturatus MAKINO. (5). Association of Zoysia japonica STEUDEL. (6). Association of Zoysia sinica HANCE var. tenuis NAKAI ex YAMAMOTO. (7). Assocation of Carex pumila THUNBERG. (8). Association of Rosa rugosa THUNBERG. (9). Association of Pinus Thunbergii PARLATORE. (1), (2), (3), (4), (5) associations can grow under the high tide, so when the high tide comes they soaked in the sea water. 4. The mountain plant formation can be subdivided as follows: (1). Association of Quercus aliena BLUME and Platycarya strobilacea STEBOLD & ZUCCARINI. (2). Association of Quercus acutissima CARRUTHERS and Platycaryastrobilacea SIEBOLD & ZUCCARINI. (3). Association of Robinia Pseudoeacia LINNE and Platycarya strobilacea SIEBOLD & ZUCCARINI. 5. The plants at the abandoned mine regions are replacing by the association of Robinia Pseudacacia LINNE and Platycarya strobilacea SIEBOLD & ZUCCARINI. 6. Generally I can find that soil which is developed by the seaside plant formation under sea water (when high tide comes, they soaked in the sea water) is over the pH 8.0, so it shows strong alkaline. But the sandy soil behind the tide line shows near the neutral in spite of the same seaside plant formation. In the case of mountain plant formation the soil where they developed show near the pH 6.0, so it is acidity.

  • PDF

Distribution and Characteristics of Native and Exotic Plants on Cut Slopes and Rest Areas along Korean Highway Lines

  • Kim, Kee-Dae
    • Journal of Environmental Science International
    • /
    • v.16 no.5
    • /
    • pp.549-559
    • /
    • 2007
  • Vegetation surveys were performed at 45 plots along 10 highways cut slopes in South Korea. Total floral inventory, species richness and exotic plant percentage were obtained within each plot. Life history and life form of each species appeared were analyzed. Community types were classified using hierarchical cluster analysis and detrended correspondence analysis and non-metric multidimensional scaling were conducted from vegetation matrix. 292 species of vascular plants were discovered and the number of natives and exotics were 226 and 66, respectively. There were no significant differences of species richness and exotic plant percentage between cut slopes and rest areas. Hierarchical cluster analysis indicated five clear vegetation associations in cut slopes and rest areas. Detrended correspondence analysis indicated that species composition of total and native plants were similar along the highway cut slopes whereas exotic plants were distributed differentially along the highway cut slopes. in non-metric multidimensional scaling, the studied sites were more separated from each other on the basis of their species composition than the results of detrended correspondence analysis with respect to total, native and exotic plants. The both ordination represented that exotic plants have not been made uniform yet on cut slopes and rest areas by highway corridor in spite of diverse chronosequences after highway construction termination (1 to 22 years). This study showed that the distribution of species composition in exotic plants was different and localized on cut slopes and rest areas of highway in this representative peninsula area of North East Asia and the invasion of exotic plants can retard the process of plant species homogenization.

Variations of Yield Components and Anthocyanin Contents in Soritae and Yakkong Black Soybean Landraces Collected from Different Areas

  • Choi, Yu-Mi;Yoon, Hyemyeong;Shin, Myoung-Jae;Lee, Yoonjung;Lee, Sukyeung;Han, Wang Xiao;Desta, Kebede Taye
    • Korean Journal of Plant Resources
    • /
    • v.34 no.6
    • /
    • pp.542-554
    • /
    • 2021
  • In this study, we cultivated 115 Soritae and 86 Yakkong black soybean landraces collected from ten different locations in Korea. Then, the variations of three yield components (one-hundred seeds weight (HSW), number of seeds per pod (SPP), and yield per plant (YPP)) and three anthocyanins (cyanidin-3-O-glucoside (C-3-O-G), delphinidin-3-O-glucoside (D-3-O-G) and petunidin-3-O-glucoside (Pt-3-O-G)) were investigated according to landrace type and collection area. Both yield components and anthocyanin contents significantly varied between the soybeans demonstrating genetic differences. Soritae landraces had the highest average HSW and TAC, whereas Yakkong landraces displayed the highest average SPP irrespective of collection area. Relatively, Yakkong landraces from Gyeongsangnam-do (1697.29 mg/100 g) and Soritae landraces from Gyeonggi-do (2340.94 mg/100 g) had the highest average TAC. Principal component analysis clearly separated Soritae and Yakkong landraces. Moreover, TAC and C-3-O-G showed positive and significant associations in both Soritae (r = 0.972) and Yakkong (r = 0.885) landraces, while yield components showed negative or weak correlations with each other. Overall, ten landraces were identified as important resources owing to their high yield (>150 g/plant) and high level of TAC (>2300 mg/100g). This study could lay foundations to molecular level investigations and reinforce the use of Yakkong and Soritae landraces during cultivar development.

Re-identification of Colletotrichum gloeosporioides Species Complex Isolates in Korea and Their Host Plants

  • Le Dinh Thao;Hyorim Choi;Yunhee, Choi;Anbazhagan Mageswari;Daseul Lee;Dong-Hyun Kim;Hyeon-Dong Shin;Hyowon Choi;Ho-Jong Ju;Seung-Beom Hong
    • The Plant Pathology Journal
    • /
    • v.40 no.1
    • /
    • pp.16-29
    • /
    • 2024
  • The Colletotrichum gloeosporioides species complex includes many phytopathogenic species, causing anthracnose disease on a wide range of host plants and appearing to be globally distributed. Seventy-one Colletotrichum isolates in the complex from different plants and geographic regions in Korea were preserved in the Korean Agricultural Culture Collection (KACC). Most of them had been identified based on hosts and morphological features, this could lead to inaccurate species names. Therefore, the KACC isolates were re-identified using DNA sequence analyses of six loci, comprising internal transcribed spacer, gapdh, chs-1, his3, act, and tub2 in this study. Based on the combined phylogenetic analysis, KACC strains were assigned to 12 known species and three new species candidates. The detected species are C. siamense (n = 20), C. fructicola (n = 19), C. gloeosporioides (n = 9), C. aenigma (n = 5), C. camelliae (n = 3), C. temperatum (n = 3), C. musae (n = 2), C. theobromicola (n = 2), C. viniferum (n = 2), C. alatae (n = 1), C. jiangxiense (n = 1), and C. yulongense (n = 1). Of these, C. jiangxiense, C. temperatum, C. theobromicola and C. yulongense are unrecorded species in Korea. Host plant comparisons showed that 27 fungus-host associations are newly reported in the country. However, plant-fungus interactions need to be investigated by pathogenicity tests.

Biochemical Adaptation of the Oriental Tobacco Budworm, Helicoverpa assulta, to Host-plant Defensive Compounds (기주식물 방어물질에 대한 담배나방의 생화학적 적응)

  • Ahn, Seung-Joon
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.143-154
    • /
    • 2022
  • Plant secondary metabolites play an important role in insect-plant interactions. Herbivorous insects have various strategies to cope with the plant defensive compounds. Polyphagous insects feed on a wide variety of plant species, and their detoxification mechanisms are more complex since they tend to respond to a large array of different plant-derived chemicals. Alternatively, oligophagous insects specialize on only a few related plant species and may be expected to have a more efficient form of adaptation. This adaptation could involve either the production of large quantities of enzymes to detoxify their defensive compounds or the sequestration of the compounds or their metabolites. The oriental tobacco budworm, Helicoverpa assulta, is a specialist herbivore, feeding on a few plants of Solanaceae, such as tobacco and hot pepper. Understanding its host-plant adaptation not provides an important insight on physiology, ecology and evolution of specialist herbivores, but also gives a clue to develop management strategies of the pest species such as H. assulta. This paper briefly reviews the specialist, H. assulta, focusing on its host range, larval associations with the host plants, and detoxification mechanisms to nicotine and capsaicin, two characteristic defensive compounds derived from its two major host plants, tobacco and hot pepper, respectively. It summarizes the relevant research over the last half century and provides a future perspective on this subject.