Browse > Article
http://dx.doi.org/10.5423/RPD.2022.28.4.209

Phylogeny, Morphology and Pathogenicity of Biscogniauxia mediterranea Causing Charcoal Canker Disease on Quercus brantii in Southern Iran  

Samaneh, Ahmadi (Department of Plant Protection, College of Agriculture, Yasouj University)
Fariba, Ghaderi (Department of Plant Protection, College of Agriculture, Yasouj University)
Habiballah, Charehgani (Department of Plant Protection, College of Agriculture, Yasouj University)
Soraya, Karami (Department of Agriculture, Payame Noor University (PNU))
Dariush, Safaee (Plant Protection Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO)
Publication Information
Research in Plant Disease / v.28, no.4, 2022 , pp. 209-220 More about this Journal
Abstract
Charcoal canker of oak, which has recently increased in southern Iran, could pose a serious threat to the entire forest ecosystem in the near future. In addition, it seems that climate change and its consequences, such as drought in the southern regions of Iran, have exacerbated this phenomenon. Consequently, the objective of this study was to identify the fungal pathogens that could cause charcoal canker disease in the oak forests of South Zagros. It was also sought to find associations between changes in the occurrence/exacerbation of charcoal canker disease under non and intense drought stress in non-inoculated or inoculated Quercus brantii seedlings. In total, 120 isolates were obtained from eight oak forests located in the Zagros Mountains of Southern Iran, Kohgiluyeh & Boyer-Ahmad and Fars provinces, which were classified as Biscogniauxia mediterranea based on morphological assessment. Subsequently, molecular assay confirmed the result by phylogenetic inference of internal transcribed spacer-rDNA regions, α-actin, and β-tubulin genes. The results of the pathogenicity test showed that the response of isolates of B. mediterranea (Iran-G1 and Iran-M70) was varied in different environments for the measured necrotic lesion length. In comparison with the control moisture treatments (non-stress), the necrotic lesion length in inoculated treatments increased under intense drought stress. In general, inoculated oak seedlings' exposure to water-deficient stress by the pathogen of B. mediterranea could affect the spread/severity of the charcoal canker disease.
Keywords
Biscogniauxia; Multigene phylogeny; Oak Death; Pathogenicity; Zagros forests;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Goharrizi, K. J., Baghizadeh, A., Kalantar, M. and Fatehi, F. 2020. Combined effects of salinity and drought on physiological and biochemical characteristics of pistachio rootstocks. Sci. Hortic. 261: 108970. 
2 Henriques, J., Barrento, M. J., Bonifacio, L., Gomes, A. A., Lima, A. and Sousa E. 2014. Factors affecting the dispersion of Biscogniauxia mediterranea in Portuguese cork oak stands. Silva Lusit. 22: 83-97. 
3 Henriques, J., Inacio, M. L., Lima, A. and Sousa, E. 2012. New outbreaks of charcoal canker on young cork oak trees in Portugal. IOBC/WPRS Bull. 76: 85-88. 
4 Hsieh, H.-M., Ju, Y.-M., Hsueh, P.-R., Lin, H.-Y., Hu, F.-R. and Chen, W.-L. 2009. Fungal keratitis caused by a new filamentous hyphomycete Sagenomella keratitidis. Bot. Stud. 50: 331-335. 
5 Hsieh, H.-M., Ju, Y.-M. and Rogers, J. D. 2005. Molecular phylogeny of Hypoxylon and closely related genera. Mycologia 97: 844-865.    DOI
6 Ju, Y.-M. and Rogers, J. D. 2001. New and interesting Biscogniauxia taxa, with a key to the world species. Mycol. Res. 105: 1123-1133.    DOI
7 Ju, Y. M., Rogers, J. D., San Martin, F. and Granmo, A. 1998. The genus Biscogniauxia. Mycotaxon 66: 1-98. 
8 Jurc, D. and Ogris, N. 2006. First reported outbreak of charcoal disease caused by Biscogniauxia mediterranea on Turkey oak in Slovenia. Plant Pathol. 55: 299. 
9 La Porta, N., Capretti, P., Thomsen, I. M., Kasanen, R., Hietala, A. M. and Von Weissenberg, K. 2008. Forest pathogens with higher damage potential due to climate change in Europe. Can. J. Plant Pathol. 30: 177-195.    DOI
10 Linaldeddu, B. T., Scanu, B., Maddau, L. and Franceschini, A. 2014. Diplodia corticola and Phytophthora cinnamomi: the main pathogens involved in holm oak decline on Caprera Island (Italy). For. Pathol. 44: 191-200.    DOI
11 Linaldeddu, B. T., Sirca, C., Spano, D. and Franceschini, A. 2011. Variation of endophytic cork oak-associated fungal communities in relation to plant health and water stress. For. Pathol. 41: 193-201.    DOI
12 Mansouri Daneshvar, M. R., Ebrahimi, M. and Nejadsoleymani, H. 2019. An overview of climate change in Iran: facts and statistics. Environ. Syst. Res. 8: 7. 
13 Massey, F. J. Jr. 1951. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46: 68-78.    DOI
14 Mirabolfathy, M., Groenewald, J. Z. and Crous, P. W. 2011. The occurrence of charcoal canker disease caused by Biscogniauxia mediterranea on chestnut-leaved oak (Quercus castaneifolia) in the Golestan forests of Iran. Plant Dis. 95: 876. 
15 Mirabolfathy, M., Ju, Y.-M., Hsieh, H.-M., and Rogers, J. D. 2013. Obolarina persica sp. nov., associated with dying Quercus in Iran. Mycoscience 54: 315-320.    DOI
16 Mollaei, Y. T. 2019. The root results of oak sudden death in Plain Barm, Zagros Forest, Fars, Iran. JOJ Wildl. Biodivers. 1: 555558. 
17 Murray, M. G. and Thompson, W. F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321-4325.    DOI
18 Nugent, L. K., Sihanonth, P., Thienhirun, S. and Whalley, A. J. S. 2005. Biscogniauxia: a genus of latent invaders. Mycologist 19: 40-43.    DOI
19 O'Donnell, K. and Cigelnik, E. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 7: 103-116.    DOI
20 Ragazzi, A., Mancini, F., Dellavalle, I., Captreti, P. and Moricca, S. 2001. Endophytic fungi in Quercus cerris: isolation frequency in relation to phenological phase, tree health and the organ affected. Phytopathol. Mediterr. 40: 165-171. 
21 Ranjbarfordoei, A., Vandamme, P. and Samson, R. 2013. Some eco-physiological characteristics of arta (Calligonum comosum L'Herit) in response to drought stress. For. Sci. Pract. 15: 114-120.    DOI
22 Rogers, J. D., Ju, Y.-M. and Candoussau, F. 1996. Biscogniauxia anceps comb. nov. and Vivantia guadalupensis gen. et sp. nov. Mycol. Res. 100: 669-674.    DOI
23 Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S. et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61: 539-542.    DOI
24 Sabeti, H. 1994. Forest, Trees, and Shrubs of Iran. 2nd ed. Yazd University, Yazd, Iran. 810 
25 Saeidnia, F., Majidi, M. M., Mirlohi, A. and Ahmadi, B. 2018. Physiological responses of drought tolerance in orchardgrass (Dactylis glomerata) in association with persistence and summer dormancy. Crop Pasture Sci. 69: 515-526.    DOI
26 Safaee, D., Khodaparast, S. A., Mirabolfathy, M. and Mousanejad, S. 2015. Pathogenicity assessment of Obolarina persica on Persian oak tree and seedling. In: Proceeding of 2nd Iranian Mycological Congress, p. 120. University of Tehran, Tehran, Iran. 
27 Safaee, D., Khodaparast, S. A., Mirabolfathy, M. and Mousanejad, S. 2016. A multiplex PCR-based technique for identification of Biscogniauxia mediterranea and Obolarina persica causing charcoal disease of oak trees in Zagros forests. For. Pathol. 47: e12330. 
28 Safaee, D., Khodaparast, S. A., Mirabolfathy, M. and Sheikholeslami, M. 2017. Some aspects of biology and host range of Biscogniauxia mediterranea, one of the causal agent of oak charcoal disease. Mycol. Iran. 4: 121-129. 
29 Swofford, D. L. 2002. PAUP*: phylogenetic analysis using parsimony (*and(*and other methods). Sinauer Associates, Sunderland, MA, USA. 
30 Vannini, A., Lucero, G., Anselmi, N. and Vettraino, A. M. 2009. Response of endophytic Biscogniauxia mediterranea to variation in leaf water potential of Quercus cerris. For. Pathol. 39: 8-14.    DOI
31 Vasilyeva, L. N., Stephenson, S. L. and Miller, A. N. 2007. Pyrenomycetes of the Great Smoky Mountains National Park. IV. Biscogniauxia, Camaropella, Camarops, Camillea, Peridoxylon and Whalleya. Fungal Divers. 25: 219-231. 
32 White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications, eds. by M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, pp. 315-322. Academic Press, New York, NY, USA. 
33 Carter, M. R. and Gregorich, E. G. 2007. Soil Sampling and Methods of Analysis. CRC Press, Boca Raton, FL, USA. 1264 
34 Aranda, I., Castro, L., Pardos, M., Gil, L. and Pardos, J. A. 2005. Effects of the interaction between drought and shade on water relations, gas exchange and morphological traits in cork oak (Quercus suber L.) seedlings. For. Ecol. Manag. 210: 117-129.    DOI
35 Capretti, P. and Battisti, A. 2007. Water stress and insect defoliation promote the colonization of Quercus cerris by the fungus Biscogniauxia mediterranea. For. Pathol. 37: 129-135.    DOI
36 Carbone, I. and Kohn, L. M. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553-556.    DOI
37 Collado, J., Platas, G. and Pelaez, F. 2001. Identification of an endophytic Nodulisporium sp. from Quercus ilex in central Spain as the anamorph of Biscogniauxia mediterranea by rDNA sequence analysis and effect of different ecological factors on distribution of the fungus. Mycologia 93: 875-886.    DOI
38 Corcobado, T., Cubera E., Juarez, E., Moreno, G. and Solla, A. 2014. Drought events determine performance of Quercus ilex seedlings and increase their susceptibility to Phytophthora cinnamomi. Agric. For. Meteorol. 192-193: 1-8.    DOI
39 Emadodin, I., Reinsch, T. and Taube, F. 2019. Drought and desertification in Iran. Hydrology 6: 66. 
40 Cotrozzi, L., Remorini, D., Pellegrini, E., Landi, M., Massai, R., Nali, C. et al. 2016. Variations in physiological and biochemical traits of oak seedlings grown under drought and ozone stress. Physiol. Plant. 157: 69-84.    DOI
41 Faraji, S., Hadadinejad, M., Abdossi, V., Basaki, T. and Karami, S. 2020. Screening pomegranate (Punica granatum L.) genotypes for drought tolerance using physiological and phytochemical characteristics. Fruits 75: 130-140.    DOI
42 Franceschini, A. and Luciano, P. 2009. Main pests and diseases of cork oak forests in Sardinia. In: Cork Oak Woodlands and Cork Industry: Present, Past and Future, ed. by S. Zapata, pp. 172-195. Museu del Suro de Palafrugell Publisher, Girona, Spain.
43 Ghaderi, F. and Habibi, A. 2021. Morphological and molecular characterization of Phytophthora species associated with root and crown rot of pomegranate in Iran. Plant Pathol. 70: 615-629.    DOI
44 Ghanbary, E., Tabari Kouchaksaraei, M., Mirabolfathy, M., Modarres Sanavi, S. A. M. and Rahaie, M. 2017. Growth and physiological responses of Quercus brantii seedlings inoculated with Biscogniauxia mediterranea and Obolarina persica under drought stress. For. Pathol. 47: e12353. 
45 Giambra, S., Torta, L., Scopel, C., Causin, R. and Burruano, S. 2009. Primi studi su Biscogniauxia mediterranea in Sicilia Occidentale. In: Atti del Terzo Congresso Nazionale di Selvicoltura, pp. 1394-1396. Accademia Italiana di Scienze Forestali, Firenze, Italy. 
46 Glass, N. L. and Donaldson, G. C. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61: 1323-1330.    DOI