Browse > Article
http://dx.doi.org/10.5656/KSAE.2022.02.0.018

Biochemical Adaptation of the Oriental Tobacco Budworm, Helicoverpa assulta, to Host-plant Defensive Compounds  

Ahn, Seung-Joon (Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Mississippi State University)
Publication Information
Korean journal of applied entomology / v.61, no.1, 2022 , pp. 143-154 More about this Journal
Abstract
Plant secondary metabolites play an important role in insect-plant interactions. Herbivorous insects have various strategies to cope with the plant defensive compounds. Polyphagous insects feed on a wide variety of plant species, and their detoxification mechanisms are more complex since they tend to respond to a large array of different plant-derived chemicals. Alternatively, oligophagous insects specialize on only a few related plant species and may be expected to have a more efficient form of adaptation. This adaptation could involve either the production of large quantities of enzymes to detoxify their defensive compounds or the sequestration of the compounds or their metabolites. The oriental tobacco budworm, Helicoverpa assulta, is a specialist herbivore, feeding on a few plants of Solanaceae, such as tobacco and hot pepper. Understanding its host-plant adaptation not provides an important insight on physiology, ecology and evolution of specialist herbivores, but also gives a clue to develop management strategies of the pest species such as H. assulta. This paper briefly reviews the specialist, H. assulta, focusing on its host range, larval associations with the host plants, and detoxification mechanisms to nicotine and capsaicin, two characteristic defensive compounds derived from its two major host plants, tobacco and hot pepper, respectively. It summarizes the relevant research over the last half century and provides a future perspective on this subject.
Keywords
Helicoverpa assulta; Host-plant adaptation; Metabolic detoxification; Nicotine; Capsaicin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Choi, M.Y., Han, K.S., Boo, K.S., Jurenka, R.A., 2002. Pheromone biosynthetic pathways in the moths Helicoverpa zea and Helicoverpa assulta. Insect Biochem. Mol. Biol. 32, 1353-1359. doi:10.1016/S0965-1748(02)00055-3   DOI
2 Choi, M.Y., Tanaka, M., Kataoka, H., Boo, K.S., Tatsuki, S., 1998a. Isolation and identification of the cDNA encoding the pheromone biosynthesis activating neuropeptide and additional neuropeptides in the oriental tobacco budworm, Helicoverpa assulta (Lepidoptera: Noctuidae). Insect Biochem. Mol. Biol. 28, 759-766. doi:10.1016/S0965-1748(98)00065-4   DOI
3 Chung, C.S., Hyun, J.S., 1980. The effects of temperatures on the development of oriental tobacco budmoth, Heliothis assulta Guenee, and control effects of Thuricide HP®. Korean J. Plant Prot. 19, 57-65.
4 Cork, A., Boo, K.S., Dunkelblum, E., Hall, D.R., Jee-Rajunga, K., Kehat, M., Kong Jie, E., Park, K.C., Tepgidagarn, P., Xun, L., 1992. Female sex pheromone of oriental tobacco budworm, Helicoverpa assulta (Guenee) (Lepidoptera: Noctuidae): Identification and field testing. J. Chem. Ecol. 18, 403-418. doi:10.1007/BF00994240   DOI
5 Cunningham, J.P., Zalucki, M.P., 2014. Understanding Heliothine (Lepidoptera: Heliothinae) pests: What is a host plant. J. Econ. Entomol. 107, 881-896. doi:10.1603/EC14036   DOI
6 Bernays, E., Graham, M., 1988. On the evolution of host specificity in phytophagous arthropods. Ecology 69, 886-892. doi:10.2307/1941237   DOI
7 Boo, K.S., Shin, H.C., Han, M.W., Lee, M.H., 1990. Initiation and termination of pupal diapause in the oriental tobacco budworm (Heliothis assulta). Korean J. Appl. Entomol. 29, 277-285.
8 Boo, K.S., Yang, J.P., 2000. Kairomones used by Trichogramma chilonis to find Helicoverpa assulta eggs. J. Chem. Ecol. 26, 359-375. doi:10.1023/A:1005453220792   DOI
9 CAB International, 2020. Distribution map of Helicoverpa assulta (Oriental tobacco budworm) [WWW Document]. https://www.cabi.org/isc/datasheet/26758 (accessed on 28 January, 2022).
10 Cheng, Q., Gu, S., Liu, Z., Wang, C.-Z., Li, X., 2017. Expressional divergence of the fatty acid-amino acid conjugate-hydrolyzing aminoacylase 1 (L-ACY-1) in Helicoverpa armigera and Helicoverpa assulta. Sci. Rep. 7, 8721. doi:10.1038/s41598-017-09185-2   DOI
11 Cho, J.R., Boo, K.S., 1988. Behavior and circadian rhythm of emergence, copulation and oviposition in the oriental tobacco budworm, Heliothis assulta Guenee. Korean J. Appl. Entomol. 27, 103-110.
12 Ahn, S.-J., Vogel, H., Heckel, D.G., 2012. Comparative analysis of the UDP-glycosyltransferase multigene family in insects. Insect Biochem. Mol. Biol. 42, 133-147. doi:10.1016/j.ibmb.2011.11.006   DOI
13 Yang, C.-Y., Jen, H.-Y., Cho, M.-R., Kim, D.-S., and Yiem, M.-S., 2004. Seasonal occurrence of oriental tobacco budworm (Lepidoptera: Noctuidae) male and cohemical control at red pepper fields. Korean J. Appl. Entomol. 43, 49-54.
14 Wang, C., Dong, J., 2001. Interspecific hybridization of Helicoverpa armigera and H. assulta (Lepidoptera: Noctuidae). Chinese Sci. Bull. 46, 489-491. doi:10.1007/BF03187264   DOI
15 Wang, C., Dong, J., Tang, D., Zhang, J., Li, W., Qin, J., 2004. Host selection of Helicoverpa armigera and H. assulta and its inheritance. Prog. Nat. Sci. 14, 880-884. doi:10.1080/10020070412331344491   DOI
16 Mazourek, M., Pujar, A., Borovsky, Y., Paran, I., Mueller, L., Jahn, M.M., 2009. A dynamic interface for capsaicinoid systems biology. Plant Physiol. 150, 1806-1821. doi:10.1104/pp.109.136549   DOI
17 Xu, G., Qin, J.-D., 1987. Responses of two Heliothis species to plant secondary substances: the influence of host secondary substances on larval growth and food utilization. Acta Entomol. Sin. 30, 359-366.
18 Xu, M., Guo, H., Hou, C., Wu, H., Huang, L.-Q., Wang, C.-Z., 2016. Olfactory perception and behavioral effects of sex pheromone gland components in Helicoverpa armigera and Helicoverpa assulta. Sci. Rep. 6, 22998. doi:10.1038/srep22998   DOI
19 Zong, N., Wang, C.-Z., 2004. Induction of nicotine in tobacco by herbivory and its relation to glucose oxidase activity in the labial gland of three noctuid caterpillars. Chinese Sci. Bull. 49, 1596-1601. doi:10.1360/03wc0185   DOI
20 Choi, K.M., Cho, E.H., So, J.S., Hwang, C.Y., 1975. Studies on the seasonal occurrences of the tobacco budworm, Heliothis assulta H. (Lepidoptera: Noctuidae), and the parasitism ratio of Trichogramma spp. on the eggs. Korean J. Plant Prot. 14, 137-140.
21 Kamimura, M., Tatsuki, S., 1994. Effects of photoperiodic changes on calling behavior and pheromone production in the Oriental tobacco budworm moth, Helicoverpa assulta (Lepidoptera: Noctuidae). J. Insect Physiol. 40, 731-734. doi:10.1016/0022-1910(94)90101-5   DOI
22 Jallow, M.F.A., Paul Cunningham, J., Zalucki, M.P., 2004. Intraspecific variation for host plant use in Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae): Implications for management. Crop Prot. 23, 955-964. doi:10.1016/j.cropro.2004.02.008   DOI
23 Jung, J.K., Boo, K.S., 1992. Lipid and carbohydrate contents in the adult hemolymph during flight of the oriental tobacco budworm (Helicoverpa assulta (Guenee)). Korean J. Appl. Entomol. 31, 329-337.
24 Kamimura, M., Tatsuki, S., 1993. Diel rhythms of calling behavior and pheromone production of oriental tobacco budworm moth, Helicoverpa assulta (Lepidoptera: Noctuidae). J. Chem. Ecol. 19, 2953-2963. doi:10.1007/BF00980595   DOI
25 Ketterman, A.J., Saisawang, C., Wongsantichon, J., 2011. Insect glutathione transferases. Drug Metab. Rev. 43, 253-265. doi:10.3109/03602532.2011.552911   DOI
26 Park, K.C., Boo, K.S., Cork, A., Hall, D.R., 2002. Monitoring Helicoverpa assulta (Guenee) (Lepidoptera: Noctuidae) with synthetic sex pheromone and small scale disruption trial with controlledrelease PVC resin formulation. Chem. Pharm. Bull. 34, 19-22.
27 McIndoo, N.E., 1916. Effects of nicotine as an insecticide. J. Agric. Res. Dep. Agric. 7, 89-122.
28 Ming, Q.-L., Yan, Y.-H., Wang, C.-Z., 2007. Mechanisms of premating isolation between Helicoverpa armigera (Hubner) and Helicoverpa assulta (Guenee) (Lepidoptera: Noctuidae). J. Insect Physiol. 53, 170-178. doi:10.1016/J.JINSPHYS.2006.11.007   DOI
29 Mitter, C., Poole, R.W., Matthews, M., 1993. Biosystematics of the Heliothinae (Lepidoptera: Noctuidae). Annu. Rev. Entomol. 38, 207-225. doi:10.1146/annurev.en.38.010193.001231   DOI
30 Cho, K.H., Boo, K.S., 1990. Change in protein and carbohydrate contents in diapausing and non-diapausing pupae of the oriental tobacco budworm, Heliothis assulta Guenee. Korean J. Appl. Entomol. 29, 286-293.
31 Choi, K.S., Boo, K.S., 1989b. Effects of extracts from some selected wild plant species on larval development and adult oviposition in Heliothis assulta. Korean J. Appl. Entomol. 28, 113-119.
32 Musser, R.O., Hum-Musser, S.M., Eichenseer, H., Peiffer, M., Ervin, G., Murphy, J.B., Felton, G.W., 2002. Caterpillar saliva beats plant defences. Nature 416, 599-600. doi:10.1038/416599a   DOI
33 Kirkpatrick, T.H., 1961. Comparative morphological studies of Heliothis species (Lepidoptera: Noctuidae) in Queensland. Queensl. J. Agric. Sci. 18, 179-194.
34 Koh, Y.H., Park, K.C., Boo, K.S., 1995. Antennal sensilla in adult Helicoverpa assulta (Lepidoptera: Noctuidae): Morphology, distribution, and ultrastructure. Ann. Entomol. Soc. Am. 88, 519-530. doi:10.1093/aesa/88.4.519   DOI
35 Cowles, R.S., Keller, J.E., Miller, J.R., 1989. Pungent spices, ground red pepper, and synthetic capsaicin as onion fly ovipositional deterrents. J. Chem. Ecol. 15, 719-730. doi:10.1007/BF01014714   DOI
36 Dong, J.-F., Zhang, J.-H., Wang, C.-Z., 2002. Effects of plant allelochemicals on nutritional utilization and detoxication enzyme activities in two Helicoverpa species. Acta Entomol. Sin. 45, 296-300.   DOI
37 Eichenseer, H., Mathews, M.C., Powell, J.S., Felton, G.W., 2010. Survey of a salivary effector in caterpillars: Glucose oxidase variation and correlation with host range. J. Chem. Ecol. 36, 885-897. doi:10.1007/s10886-010-9830-2   DOI
38 Jordt, S.E., Julius, D., 2002. Molecular basis for species-specific sensitivity to "hot" chili peppers. Cell 108, 421-430. doi:10.1016/S0092-8674(02)00637-2   DOI
39 Kumar, P., Pandit, S.S., Steppuhn, A., Baldwin, I.T., 2014. Natural history-driven, plant-mediated RNAi-based study reveals CYP-6B46's role in a nicotine-mediated antipredator herbivore defense. Proc. Natl. Acad. Sci. U. S. A. 111, 1245-1252. doi:10.1073/pnas.1600609113   DOI
40 Chang, H., Ai, D., Zhang, J., Dong, S., Liu, Y., Wang, G., 2017. Candidate odorant binding proteins and chemosensory proteins in the larval chemosensory tissues of two closely related noctuidae moths, Helicoverpa armigera and H. assulta. PLoS ONE 12, e0179243. doi:10.1371/JOURNAL.PONE.0179243   DOI
41 Han, M.-W., Lee, J.-H., Lee, M.-H., 1993. Effect of temperature on development of oriental tobacco budworm, Helicoverpa assulta Guenee. Korean J. Appl. Entomol. 32, 236-244.
42 Wu, K.J., Gong, P.Y., Ruan, Y.M., 2006. Is tomato plant the host of the oriental tobacco budworm, Helicoverpa assulta (Guenee)? Acta Entomol. Sin. 49, 421-427.   DOI
43 Choi, K.S., Boo, K.S., 1989a. Food attractancy of the oriental tobacco budworm, Heliothis assulta, larvae. Korean J. Appl. Entomol. 28, 88-92.
44 Hori, M., Nakamura, H., Fujii, Y., Suzuki, Y., Matsuda, K., 2011. Chemicals affecting the feeding preference of the Solanaceaefeeding lady beetle Henosepilachna vigintioctomaculata (Coleoptera: Coccinellidae). J. Appl. Entomol. 135, 121-131. doi:10.1111/j.1439-0418.2010.01519.x   DOI
45 Hwang, C.Y., Choi, K.M., Park, J.S., 1987. Studies on bionomics of the oriental tobacco budworm, Heliothis assulta Guenee. Res. Rep. RDA 29, 95-113.
46 Jadhav, D.R., Armes, N.J., 1996. Comparative status of insecticide resistance in the Helicoverpa and Heliothis species (Lepidoptera: Noctuidae) of south India. Bull. Entomol. Res. 86, 525-531. doi:10.1017/S0007485300039316   DOI
47 Zong, N., Wang, C.-Z., 2007. Larval feeding induced defensive responses in tobacco: Comparison of two sibling species of Helicoverpa with different diet breadths. Planta 226, 215-224. doi:10.1007/s00425-006-0459-x   DOI
48 Wang, K.-Y., Zhang, Y., Wang, H.-Y., Xia, X.-M., Liu, T.-X., 2008. Biology and life table studies of the oriental tobacco budworm, Helicoverpa assulta (Lepidoptera: Noctuidae), influenced by different larval diets. Insect Sci. 15, 569-576. doi:10.1111/j.1744-7917.2008.00247.x   DOI
49 Wang, Y., Ma, Y., Zhou, D.-S., Gao, S.-X., Zhao, X.-C., Tang, Q.-B., Wang, C.-Z., van Loon, J.J.A., 2017. Higher plasticity in feeding preference of a generalist than a specialist: Experiments with two closely related Helicoverpa species. Sci. Rep. 7, 17876. doi:10.1038/s41598-017-18244-7   DOI
50 Weissenberg, M., Klein, M., Meisner, J., Ascher, K.R.S., 1986. Larval growth inhibition of the spiny bollworm, Earias insulana, by some steroidal secondary plant compounds. Entomol. Exp. Appl. 42, 213-217. doi:10.1111/j.1570-7458.1986.tb01024.x   DOI
51 Xie, L., Jiang, M., Zhang, X., 1998. Effect of temperature and humidity on laboratory population of Helicoverpa assulta. Acta Entomol. Sin. 41, 61-69.
52 Xu, G., Qin, J., 1994. Extraction and characterization of midgut proteases from Heliothis armigera and H. assulta (Lepidoptera: Noctuidae) and their inhibition by tannic acid. J. Econ. Entomol. 87, 334-338. doi:10.1093/jee/87.2.334   DOI
53 Snyder, M.J., Walding, J.K., Feyereisen, R., 1994. Metabolic fate of the allelochemical nicotine in the tobacco hornworm Manduca sexta. Insect Biochem. Mol. Biol. 24, 837-846. doi:10.1016/0965-1748(94)90112-0   DOI
54 Boo, K.S., Yang, J.P., 1998. Olfactory response of Trichogramma chilonis to Capsicum annuum. J. Asia-Pacific Entomol. 1, 123-129. doi:10.1016/S1226-8615(08)60014-X   DOI
55 Ahn, S.-J., Badenes-Perez, F.R., Heckel, D.G., 2011a. A host-plant specialist, Helicoverpa assulta, is more tolerant to capsaicin from Capsicum annuum than other noctuid species. J. Insect Physiol. 57, 1212-1219. doi:10.1016/j.jinsphys.2011.05.015   DOI
56 Park, K.C., Boo, K.S., Hall, D.R., Cork, A., 1994. Biological activity of female sex pheromone of the oriental tobacco budworm, Helicoverpa assulta (Guenee) (Lepidoptera: Noctuidae). Korean J. Appl. Entomol. 33, 26-32.
57 Park, K.C., Cork, A., Boo, K.S., 1996. Intrapopulational changes in sex pheromone composition during scotophase in oriental tobacco budworm, Helicoverpa assulta (Guenee) (Lepidoptera: Noctuidae). J. Chem. Ecol. 22, 1201-1210. doi:10.1007/BF02027955   DOI
58 Bonaventure, G., VanDoorn, A., Baldwin, I.T., 2011. Herbivore-associated elicitors: FAC signaling and metabolism. Trends Plant Sci. 16, 294-299. doi:10.1016/j.tplants.2011.01.006   DOI
59 Boo, K.S., Park, K.C., Hall, D.R., Cork, A., Berg, B.G., Mustaparta, H., 1995. (Z)-9-tetradecenal: a potent inhibitor of pheromone-mediated communication in the oriental tobacco budworm moth, Helicoverpa assulta. J. Comp. Physiol. A 177, 695-699. doi:10.1007/BF00187628   DOI
60 Brattsten, L.B., 1988. Enzymic adaptations in leaf-feeding insects to host-plant allelochemicals. J. Chem. Ecol. 14, 1919-1939. doi:10.1007/BF01013486   DOI
61 Tang, D., Wang, C., Luo, L., Qin, J., 2000. Comparative study on the responses of maxillary sensilla styloconica of cotton bollworm Helicoverpa armigera and Oriental tobacco budworm H. assulta larvae to phytochemicals. Sci. China Ser. C Life Sci. 43, 606-612. doi:10.1007/BF02882281   DOI
62 Tian, K., Zhu, J., Li, M., Qiu, X., 2019. Capsaicin is efficiently transformed by multiple cytochrome P450s from Capsicum fruit-feeding Helicoverpa armigera. Pestic. Biochem. Physiol. 156, 145-151. doi:10.1016/j.pestbp.2019.02.015   DOI
63 Lee, J.-H., Han, M.-W., 1998. Survival and development of overwintering pupae of the oriental tobacco budworm, Helicoverpa assulta, from different locality. Korean J. Appl. Entomol. 37, 127-135.
64 Lee, D.W., Kim, S.S., Shin, S.W., Kim, W.T., Boo, K.S., 2006. Molecular characterization of two acetylcholinesterase genes from the oriental tobacco budworm, Helicoverpa assulta (Guenee). Biochim. Biophys. Acta 1760, 125-133. doi:10.1016/J.BBAGEN.2005.10.009   DOI
65 Lee, J.H., Boo, K.S., 1993a. Comparative effects of nicotine and diazinon on larval mortality and activity of cytochrome P-450 monooxygenases in Helicoverpa assulta and Spodoptera exigua. Korean J. Appl. Entomol. 32, 225-235.
66 Lee, J.H., Boo, K.S., 1993b. Activity of mixed function oxidase in a few insect species in relation to their food source. Korean J. Appl. Entomol. 32, 291-299.
67 Tewksbury, J.J., Nabhan, G.P., 2001. Seed dispersal: Directed deterrence by capsaicin in chillies. Nature 412, 403-404. doi:10.1038/35086653   DOI
68 Schoonhoven, L.M., van Loon, J.J.A., Dicke, M., 2005. Insectplant biology, Second. ed. Oxford University Press, New York.
69 Slansky, F., 1990. Insect nutritional ecology as a basis for studying host plant resistance. Florida Entomol. 73, 359-378. doi:10.2307/3495455   DOI
70 Tang, Q.-B., Jiang, J.-W., Yan, Y.-H., van Loon, J.J.A., Wang, C.-Z., 2006. Genetic analysis of larval host-plant preference in two sibling species of Helicoverpa. Entomol. Exp. Appl. 118, 221-228. doi:10.1111/j.1570-7458.2006.00387.x   DOI
71 Yang, L., Wang, X., Bai, S., Li, Xin, Gu, S., Wang, C.-Z., Li, Xianchun, 2017. Expressional divergence of insect GOX genes: From specialist to generalist glucose oxidase. J. Insect Physiol. 100, 21-27. doi:10.1016/j.jinsphys.2017.05.003   DOI
72 Feyereisen, R., 2012. Insect CYP genes and P450 enzymes, in: Insect Molecular Biology and Biochemistry. Elsevier, pp. 236-316. doi:10.1016/B978-0-12-384747-8.10008-X   DOI
73 Tomizawa, M., Casida, J.E., 2005. Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annu. Rev. Pharmacol. Toxicol. 45, 247-268. doi:10.1146/annurev.pharmtox.45.120403.095930   DOI
74 Lim, H.-J., Kang, T.J., Kim, H.H., Yang, C.Y., Kim, I., Kim, D.H., Ahn, S.-J., 2016. Effect of a non-host plant Phaseolus vulgaris on larval performance and oviposition of the oriental tobacco budworm Helicoverpa assulta (Lepidoptera: Noctuidae). Entomol. Res. 46, 170-175. doi:10.1111/1748-5967.12158   DOI
75 Liu, Y.-L., Guo, H., Huang, L.-Q., Pelosi, P., Wang, C.-Z., 2014. Unique function of a chemosensory protein in the proboscis of two Helicoverpa species. J. Exp. Biol. 217, 1821-1826. doi:10.1242/jeb.102020   DOI
76 Madhumathy, A.P., Aivazi, A.A., Vijayan, V.A., 2007. Larvicidal efficacy of Capsicum annum against Anopheles stephensi and Culex quinquefasciatus. J. Vector Borne Dis. 44, 223-226.
77 Maliszewska, J., Tegowska, E., 2012. Capsaicin as an organophosphate synergist against Colorado potato beetle (Leptinotarsa decemlineata Say). J. Plant Prot. Res. 52, 28-34. doi:10.2478/v10045-012-0005-8   DOI
78 Despres, L., David, J.P., Gallet, C., 2007. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22, 298-307. doi:10.1016/j.tree.2007.02.010   DOI
79 Ehrlich, P.R., Raven, P.H., 1964. Butterflies and plants: A study in coevolution. Evolution. 18, 586-608. doi:10.1079/IVP2001184   DOI
80 Fitt, G.P., 1989. The ecology of Heliothis species in relation to agroecosystems. Annu. Rev. Entomol. 34, 17-53. doi:10.1146/annurev.en.34.010189.000313   DOI
81 Sun, L., Hou, W., Zhang, J., Dang, Y., Yang, Q., Zhao, X., Ma, Y., Tang, Q., 2021. Plant metabolites drive different responses in caterpillars of two closely related Helicoverpa species. Front. Physiol. 12, 662978. doi:10.3389/fphys.2021.662978   DOI
82 Sun, Y.-L., Huang, L.-Q., Pelosi, P., Wang, C.-Z., 2012. Expression in antennae and reproductive organs suggests a dual role of an odorant-binding protein in two sibling Helicoverpa species. PLoS ONE 7, e30040. doi:10.1371/journal.pone.0030040   DOI
83 Park, S.S., Boo, K.S., 1988. Structure of sensilla on the antenna and mouthparts of the oriental tobacco budworm (Heliothis assulta Guenee) larvae. Korean J. Appl. Entomol. 27, 94-102.
84 Choi, M.Y., Tatsuki, S., Boo, K.S., 1998b. Regulation of sex pheromone biosynthesis in the oriental tobacco budworm, Helicoverpa assulta (Lepidoptera: Noctuidae). J. Insect Physiol. 44, 653-658. doi:10.1016/S0022-1910(98)00029-8   DOI
85 Han, M.-W., Lee, J.-H., Son, J.-S., 1994. Intra- and inter-plant distribution of Helicoverpa assulta (Lepioprera: Noctuidae) eggs in red pepper and tobacco fields. Korean J. Appl. Entomol. 33, 6-11.
86 Heckel, D.G., 2018. Insect detoxification and sequestration strategies, in: Annual Plant Reviews Online. John Wiley & Sons, Ltd, Chichester, UK, pp. 77-114. doi:10.1002/9781119312994.apr0507   DOI
87 Matthews, M., 1999. Heliothine moths of Australia. A guide to pest bollworms and related noctuid groups. CSIRO Publishing, Collingwood, Australia.
88 Zhu, J., Tian, K., Reilly, C.A., Qiu, X., 2020. Capsaicinoid metabolism by the generalist Helicoverpa armigera and specialist H. assulta: Species and tissue differences. Pestic. Biochem. Physiol. 163, 164-174. doi:10.1016/J.PESTBP.2019.11.013   DOI
89 Ahn, S.-J., Badenes-Perez, F.R., Reichelt, M., Svatos, A., Schneider, B., Gershenzon, J., Heckel, D.G., 2011b. Metabolic detoxification of capsaicin by UDP-glycosyltransferase in three Helicoverpa species. Arch. Insect Biochem. Physiol. 78, 104-118. doi:10.1002/arch.20444   DOI
90 Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D., Julius, D., 1997. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 389, 816-824. doi:10.1038/39807   DOI
91 Zhou, D.-S., Wang, C.-Z., van Loon, J.J.A., 2022. Habituation to a deterrent plant alkaloid develops faster in the specialist herbivore Helicoverpa assulta than in its generalist congener Helicoverpa armigera and coincides with taste neuron desensitisation. Insects 13, 21. doi:10.3390/insects13010021   DOI
92 Ahn, S.-J., Choi, M.-Y., Boo, K.S., 2002. Mating effect on sex pheromone production of the oriental tobacco budworm, Helicoverpa assulta. J. Asia-Pacific Entomol. 5, 43-48. doi: 10.1016/S1226-8615(08)60131-4   DOI
93 Yoshinaga, N., Aboshi, T., Abe, H., Nishida, R., Alborn, H.T., Tumlinson, J.H., Mori, N., 2008. Active role of fatty acid amino acid conjugates in nitrogen metabolism in Spodoptera litura larvae. Proc. Natl. Acad. Sci. U. S. A. 105, 18058-18063. doi:10.1073/pnas.0809623105   DOI
94 Zalucki, M.P., Daglish, G., Firempong, S., Twine, P., 1986. The biology and ecology of Heliothis armigera (Hubner) and Heliothis punctigera Wallengren (Lepidoptera, Noctuidae) in Australia - What do we know. Aust. J. Zool. 34, 779-814.   DOI
95 Zhang, D.-D., Zhu, K.Y., Wang, C.-Z., 2010. Sequencing and characterization of six cDNAs putatively encoding three pairs of pheromone receptors in two sibling species, Helicoverpa armigera and Helicoverpa assulta. J. Insect Physiol. 56, 586-593. doi:10.1016/J.JINSPHYS.2009.12.002   DOI
96 Zhang, Y., Wang, K.Y., Wang, G., Guo, Q.L., Fan, K., Yuan, X.L., Wu, C.Z., 2006. Preference and adaptability of oriental tobacco budworm, Helicoverpa assulta, to three food plants. Chinese Bull. Entomol. 43, 781-784.   DOI
97 Brattsten, L.B., 1992. Metabolic defenses against plant allelochemicals, Vol II: Ecological and evolutionary processes, in: Rosenthal, G.A., Berenbaum, M.R. (Eds.), Herbivores: Their interactions with secondary plant metabolites. Academic Press, pp. 175-242.
98 Ali, J.G., Agrawal, A.A., 2012. Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci. 17, 293-302. doi:10.1016/j.tplants.2012.02.006   DOI
99 An, C.H., 1976. Study on the ecological characteristics of oriental tobacco budworm. Study Tob. Leaves 3, 15-20.
100 Pearce, S.L., Clarke, D.F., East, P.D., Elfekih, S., Gordon, K.H.J., Jermiin, L.S., McGaughran, A., Oakeshott, J.G., Papanikolaou, A., Perera, O.P., Rane, R. V., Richards, S., Tay, W.T., Walsh, T.K., Anderson, A., Anderson, C.J., Asgari, S., Board, P.G., Bretschneider, A., Campbell, P.M., Chertemps, T., Christeller, J.T., Coppin, C.W., Downes, S.J., Duan, G., Farnsworth, C.A., Good, R.T., Han, L.B., Han, Y.C., Hatje, K., Horne, I., Huang, Y.P., Hughes, D.S.T., Jacquin-Joly, E., James, W., Jhangiani, S., Kollmar, M., Kuwar, S.S., Li, S., Liu, N.Y., Maibeche, M.T., Miller, J.R., Montagne, N., Perry, T., Qu, J., Song, S. V., Sutton, G.G., Vogel, H., Walenz, B.P., Xu, W., Zhang, H.J., Zou, Z., Batterham, P., Edwards, O.R., Feyereisen, R., Gibbs, R.A., Heckel, D.G., McGrath, A., Robin, C., Scherer, S.E., Worley, K.C., Wu, Y.D., 2017. Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species. BMC Biol. 15, 63. doi:10.1186/s12915-017-0402-6   DOI
101 Wang, H.-L., Zhao, C.-H., Wang, C.-Z., 2005. Comparative study of sex pheromone composition and biosynthesis in Helicoverpa armigera, H. assulta and their hybrid. Insect Biochem. Mol. Biol. 35, 575-583. doi:10.1016/J.IBMB.2005.01.018   DOI
102 Eichenseer, H., Mathews, M.C., Bi, J.L., Murphy, J.B., Felton, G.W., 1999. Salivary glucose oxidase: Multifunctional roles for Helicoverpa zea? Arch. Insect Biochem. Physiol. 42, 99-109. doi:10.1002/(SICI)1520-6327(199909)42:1<99::AID-ARCH10>3.0.CO;2-B   DOI