• Title/Summary/Keyword: plant seeds

Search Result 1,853, Processing Time 0.029 seconds

Chemical Components Composition on Different Parts of Fruit in Schisandra chinensis Baillon (오미자 열매 부위별 이화학적 특성)

  • Lee, Ka Soon;Lee, Bo Hee;Seong, Bong Jae;Kim, Sun Ick;Han, Seung Ho;Kim, Gwan Hou;Park, Saet Byeol;Kim, Hyun Ho;Choi, Taek Yong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.851-858
    • /
    • 2016
  • The effective components of Schisandra chinensis are lignans (schizandrins and gomisins), which have various physiological functionalities such as anti-cancer, anti-inflammatory, and antioxidant activities. This study was carried out to determine the different parts of fruits in Schisandra chinensis to elevate their usefulness. Schisandra chinensis was separated into skin (epicarp), pulp (mesocarp), and seeds, and raw Omija and hot-dried Omija (HDO) were used as control. The most abundant component was nitrogen free extract (6.88~56.70%) followed by crude lipids (1.65~19.04%). The main mineral was K (383.10~2,024.10 mg/100 g), except in seeds where P was the main mineral. The main lignan in all parts of fruit was schizandrin, and the highest content of schizandrin was 9.46 mg/g in dried seeds. Total lignan content was 25.97 mg/g and 14.97 mg/g in dried seeds and HDO, respectively. A total of 17 components of fatty acids in seeds and HDO were detected, of which linoleic acid (72.66~73.78%), oleic acid (14.78~17.39%), palmitic acid (2.88~3.54%), and capric acid (1.70~4.93%) were determined as the major components. Main lignans and fatty acids of Schisandra chinensis fruit contain mainly seeds. Therefore, it is more efficient to use seeds than pulp and extract of fruit itself to use the components of Omija.

Accumulation of triple recessive alleles for three antinutritional proteins in soybean with black seed coat and green cotyledon

  • Kang, Gyung Young;Choi, Sang Woo;Chae, Won Gi;Chung, Jong Il
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.118-123
    • /
    • 2020
  • The black seed coat of soybeans contain anthocyanins which promote health. However, mature soybean seeds contain anti-nutritional factors like lipoxygenase, lectin and Kunitz Trypsin Inhibitor (KTI) proteins. Furthermore, these seeds can be used only after the genetic elimination of these proteins. Therefore, the objective of this study was to develop novel soybean genotypes with black seed coat and triple recessive alleles (lx1lx1lx2lx2lx3lx3, titilele) for lipoxygenase, lectin, and KTI proteins. From a cross of parent1 (lx1lx2lx3/lx1lx2lx3, ti/ti, Le/Le) and parent2 (lx1lx2lx3/lx1lx2lx3, Ti/Ti, le/le), 132 F2 seeds were obtained. A 3:1 segregation ratio was observed during F2 seed generation for the inheritance of lectin and KTI proteins. Between a cross of the Le and Ti genes, the observed independent inheritance ratio in the F2 seed generation was 9: 3 : 3 : 1 (69 Le_Ti_: 32 leleTi_: 22 Le_titi: 9 leletiti) (χ2=2.87, P=0.5 - 0.1). From nine F2 seeds with triple recessive alleles (lx1lx1lx2lx2lx3lx3, titilele genotype), one novel strain posessing black seed coat, and free of lipoxygenase, lectin and KTI proteins, was selected. The seed coat color of the new strain was black and the cotyledon color of the mature seed was green. The weight of 100 seeds belonging to the new strain was 35.4 g. This black soybean strain with lx1lx1lx2lx2lx3lx3, titilele genotype is a novel strain free of lipoxygenase, lectin, and KTI proteins.

Theoretical Effects of Altered Biological and Chemical Properties on Salinity Tolerance of Acacia seeds

  • S. Rehman;P.J.C. Harris;Kou, Chei-Wei;Rha, Eui-Shik
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.10b
    • /
    • pp.43-43
    • /
    • 2003
  • Multiple regression equations (Rehman et al. 2000) have been developed to predict the salinity tolerance of Acacia seeds, expressed as the I$\sub$50/ (the concentration of NaCl required to reduce final germination to 50% of the control value in DW). Accurate predictions can be made using one or more chemical and biological seed parameters. In this study the theoretical effect of varying final germination percentage in distilled water, germination rate in distilled water. (Rate), Ca$\^$2+/ or K$\^$+/ contents and their ratios, as independent factors or related factors, on the predicted salinity tolerance (I$\sub$50/) of Acacia species was investigated. Simulation of the effects of changing final germination, rate, calcium and potassium suggest the possibility of practical application of these results to modify the salinity tolerance of seeds. The predicted I$\sub$50/ increased with increasing final germination. Similarly, the higher the rate of germination, the higher the predicted salt tolerance of Acacia species. The Ca$\^$2+/ content of seeds was found to be positively correlated with I$\sub$50/. Species with higher Ca$\^$2+/ contents had a higher I$\sub$50/. This suggests that I$\sub$50/ might be increased by increasing the Ca$\^$2+/ contents of seeds by pretreatment with calcium salts or by supplying these to the mother plants.

  • PDF

Relationship between Seed Vigour and Electrolyte Leakage in Rice Seeds with Different Grain-filling Period

  • Kim, Jin-Ho;Lee, Sheong-Chun;Song, Dong-Seog
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.3
    • /
    • pp.147-151
    • /
    • 1998
  • The conductivity test is a measure of electrolytes leakage from plant tissue. The shorter the maturation period after heading was the greater electrical conductivity (EC) of rice seed. The polymer-coated seed was not different in EC compared with non-coated seed. As soaking time of rice seed increased, EC increased gradually. The EC varied from 9.9 to 20.7$\mu$S $cm^{-1}g^{-l}$ for control plots and from 21.3 to 41.7$\mu$S $cm^{-1}g^{-l}$ for heat-killed seeds which were produced by autoclaving seeds at 121$^{\circ}C$ for 20 minutes. The germination speed (the rate of 5th day) of rice seed was 94% at control plot, 83% at low temperature and 20% at high temperature. Besides, germination percentage was 95% for the control, 92% for the low temperature treatment and 39% for the high temperature treatment. The EC was negatively correlated (r=-0.771$^{**}$) with germination percentage at low temperature. Water uptake in seeds of 30, 40, 50 days after heading (DAH) was greater than that of 20 DAH. Plant height of seedlings was 9.84 cm for the control but 4.32 cm for the high temperature treatment, and the tallest for polymer-coated seed. Dry weight of seedlings was 0.841 g for the control and 0.287 g at high temperature. Besides, the polymer-coated seed was heavier than non-coated seed. The number of roots was largest from 40 to 50 DAH and polymer-coated seed, but was decreased from 20 to 30 DAH. The length of roots was 20.52 cm at control plot and 19.89 cm polymer-coated seed but 8.68 cm for the low temperature treatment and 7.28 cm for the high temperature treatment.

  • PDF

Changes of Germination Rate of Pulses Seed Germplasm after Long-term Conservation

  • Baek, Hyung-jin;Lee, Young-yi;Jung, Yeon-ju;Yoon, Mun-seop
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.44-44
    • /
    • 2018
  • The seeds of soybean (Glycine max), adzuki bean (Vigna angularis), mung bean (Vigna radiata), and kidney bean (Phaseolus vulgaris L.) were examined the germination rate after 10 years of long-term storage ($-18^{\circ}C$) conservation. For soybean seeds, 2,313 accessions were examined and germination rate of 1,082 accessions was decreased with below 15% of initial germination rate. For 227 accessions of soybean, germination rate was decreased with above 15% of initial germination rate after 10 years of long-term storage, which is needed to be rejuvenated. Germination rate of 589 accessions was increased and showed no change for 415 accessions after 10 years of long-term storage. For adzuki bean seeds, 2,058 accessions were examined and germination rate of 739 accessions was decreased with below 15% of initial germination rate. For 63 accessions of adzuki bean, germination rate was decreased with above 15% of initial germination rate after 10 years of long-term storage, which is needed to be rejuvenated. Germination rate of 535 accessions was increased and showed no change for 721 accessions after 10 years of long-term storage. For mung bean seeds, 438 accessions were examined and germination rate of 139 accessions was decreased with below 15% of initial germination rate. For 5 accessions of mung bean, germination rate was decreased with above 15% of initial germination rate after 10 years of long-term storage, which is needed to be rejuvenated. Germination rate of 155 accessions was increased and showed no change for 139 accessions after 10 years of long-term storage. For kdney bean seeds, 366 accessions were examined and germination rate of 7 accessions was decreased with below 15% of initial germination rate. For 65 accessions of kidney bean, germination rate was decreased with above 15% of initial germination rate after 10 years of long-term storage, which is needed to be rejuvenated. Germination rate of 201 accessions was increased and showed no change for 93 accessions after 10 years of long-term storage.

  • PDF

Effect of Storage Conditions and Scarification on in vitro Seed Germination in Lorathus tanakae Hosok

  • Ghimeray, Amal Kumar;Lee, Hyun Woo;Lee, Bo-Duk;Sharma, Pankaja;Shim, Ie Sung;Park, Cheol Ho
    • Korean Journal of Plant Resources
    • /
    • v.27 no.3
    • /
    • pp.263-270
    • /
    • 2014
  • Loranthus tanakae (Franch. & Sav.) is an endangered species of mistletoe, distributed in Korean peninsula. The objective of our research is to determine the effect of storage duration and conditions [air flow (AF) and air tight (AT)] at different temperatures for survivability and germination of mistletoe seeds, and also to monitor the effect of seed scarification on germination in vitro. The result revealed that the seeds stored in natural conditions (no stratification) showed highest survival rate of 100% and retained up to 93.3% even after two months of storage in natural conditions and showed higher germination percentage (90%) compare to after ripened seeds. However, the seed stored at $0^{\circ}C$ decreased the germination percentage (ranged from 63 to 73%). Therefore, it can be confirmed that mistletoe does not need after ripened treatment to promote germination. Our research also showed that the storage of L. tanaka seeds in freezing temperatures of $-20^{\circ}C$ and in room temperature for long time either in AT or AF conditions caused the loss of survival and germination rate. On the other hand, the chemical scarification (0.01N HCl incubation for 12 hrs. at $38^{\circ}C$) method was proven more effective to enhance germination percentage of L. tanakae. Regarding the temperature regime, $22^{\circ}C$ showed early germination of mistletoe seeds in vitro.

Genomics-based Sensitive and Specific Novel Primers for Simultaneous Detection of Burkholderia glumae and Burkholderia gladioli in Rice Seeds

  • Lee, Chaeyeong;Lee, Hyun-Hee;Mannaa, Mohamed;Kim, Namgyu;Park, Jungwook;Kim, Juyun;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.490-498
    • /
    • 2018
  • Panicle blight and seed rot disease caused mainly by Burkholderia glumae and Burkholderia gladioli is threatening rice cultivation worldwide. The bacteria have been reported as seed-borne pathogens from rice. Accurate detection of both pathogens on the seeds is very important for limiting the disease dissemination. Novel primer pairs targeting specific molecular markers were developed for the robust detection of B. glumae and B. gladioli. The designed primers were specific in detecting the target species with no apparent cross-reactions with other related Burkholderia species at the expected product size. Both primer pairs displayed a high degree of sensitivity for detection of B. glumae and B. gladioli separately in monoplex PCR or simultaneously in duplex PCR from both extracted gDNA and directly preheated bacterial cell suspensions. Limit of detection was as low as 0.1 ng of gDNA of both species and $3.86{\times}10^2cells$ for B. glumae and $5.85{\times}10^2cells$ for B. gladioli. On inoculated rice seeds, the designed primers could separately or simultaneously detect B. glumae and B. gladioli with a detection limit as low as $1.86{\times}10^3cells$ per rice seed for B. glumae and $1.04{\times}10^4cells$ per rice seed of B. gladioli. The novel primers maybe valuable as a more sensitive, specific, and robust tool for the efficient simultaneous detection of B. glumae and B. gladioli on rice seeds, which is important in combating rice panicle blight and seed rot by early detection and confirmation of the dissemination of pathogen-free rice seeds.

Assessing persistence of cruciferous crops in the field

  • Eun Mi, Ko;Do Young, Kim;Ye Seul, Moon;Hye Jin, Kim;In Soon, Pack;Young-Joong, Kim;Kyong-Hee, Nam;Jihyon, Kil;Chang-Gi, Kim
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.655-666
    • /
    • 2022
  • We assessed the persistence of eight major cruciferous crops-leaf mustard, oilseed rape, cabbage, broccoli, cauliflower, Chinese cabbage, turnip, and radish-growing in the field. In the first part of our experiment, we tested the viability of seeds that had been buried at two different soil depths for up to 16 months. We then broadcast seeds over the soil surface and left them undisturbed to investigate the survivorship of the resultant plants over two years. Seed viability was significantly affected by plant taxa and burial depth, but not substantially affected by the duration of burial. Although seeds of leaf mustard had the greatest viability among all crops examined here, the viability rates were significantly lower at 2 cm depth than at 15 cm. Seeds of leaf mustard, oilseed rape, broccoli, turnip, and Chinese cabbage remained viable throughout the 16-month period. A study of plant demography revealed that only leaf mustard and oilseed rape succeeded in producing seeds and overwintering in the undisturbed field. However, neither of those species competed well with other plants long-term and their overall growth and survival rates declined during the evaluation period. In addition, insect herbivory severely decreased the growth of all of these crops. Our results suggest that populations of leaf mustard and oilseed rape do not tend to persist in the field for more than a few years without disturbance and external seed inputs.

Effects of Seed Coating and Molding on Seed Germination and Seedling Growth of Rehabilitating Plants in Forest Road Slopes (임도 비탈면 녹화식물의 종자피복 및 복토처리가 발아와 생장에 미치는 영향)

  • Lee, Byung-Tae;Park, Chong-Min
    • Korean Journal of Environment and Ecology
    • /
    • v.20 no.4
    • /
    • pp.436-447
    • /
    • 2006
  • Recently, there is increasing demand on enhancing the efficiency of hydro-seed spraying in afforestation for damaged or degraded land including forest road slopes. In this study, we focus on how seed coating and molding may affect seed germination and seedling growth. Plant species used in the study are Lespedeza cyrtobotrya, Indigofera pseudotinctoria, Arudineila hirta, Poa pratensis, and Lolium perenne. The results of seed germination and seedling growth with and without seed coating and molding are analyzed as follows: 1. For all the species and in both seeding with molding covered with soil and seeding without molding in which seeds were over sown, the increment of germination ratio by seed coating method is greater than by non·coating one. Seed coating increases average germination ratios observed in seeding with molding and without molding by 11.2% and 21.4%, respectively. Germination force may decrease from 0.8 to 3.7 days depending on the plant species and the treatments. The $LD_{50}$ decreased by $0.8{\sim}2.6$ days. However, seed coating delays the start of germination by approximate 1 day for all of the observed plants. 2. Seed coating may have the effect of accelerating the growth of stem and leaf and root. The experimental result shows that seed coating leads to 21.7% and 34.8% increment of average stem and leaf growth by seeding with molding and without molding, respectively. In terms of root growth, seeding with molding results in 22.0% increment while seeding without molding produces 26.2% increased root growth. 3: Compared to seeding without molding, germination starts on an average of 1.3 days later in seeding coated seeds with molding. However. the germination ratio is increased by 5%, and germination force and $LD_{50}$ are observed to shorten by 1.0 day and 1.4 days, respectively. Meanwhile, whether seeds are coated or not may be more related with germination and seedling growth in seeding without molding than with those in seeding with molding. 4. In this study, coating materials are examined to look at which ones are better in each treatment. Coating with Vermiculite+Talcum is the most effective in germination and seedling growth for overall plants. Seed coating using Bentonite, Calcium Carbonate, and Calcium Hydroxide shows better results than non-coating does. 5. When seeds are coated, the greatest enhancement of seed germinations was observed in Indigofera pseudotinctoria and, in the case of seedling growth, Lespedeza cyrtobotrya has the most increasing observation value among the 5 examined species. These results may indicate that woody plant seeds, having greater sizes of seeds than ones of grass seeds, may have greater relation with seed coating than grass plant seeds may have. 6. Therefore, if seeds cannot be molded up after hydro-seeding on forest road slopes, it is recommended that seeds for restoration be pre-coated with Vermiculite+Talcum and then be sowed, in order to quickly stabilize the damaged slope and achieve successful afforestation.

Studies on the Relationship between Radiosensitivity and Mutation Induction in Soybean (대두의 방사선감수성과 돌연변이 출현양상에 관한 연구)

  • Kwon, S.H.;Won, J.L.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.4
    • /
    • pp.318-323
    • /
    • 1981
  • This study was conducted to establish an effective radiation treatment and selection method for induced mutants in M_1 population of soybean treated with gamma-ray. About 64% of total M_1 plants was reduced in plant height up to 50 - 60% and among which 60 - 70% of the plants were contained mutations in M_2 generation. About 60% of the MI plants have born 6 - 15 seeds per plant and 50 - 60% of their progenies produced mutants in M_2 generation. Positive correlation between plant height and number of seeds per plant in M_1 population was found. Higher visible macro-mutation rate in M_2 was observed in the groups of reduced plant height and seed number in the M_1 generation, whereas the frequency of chlorophyll mutation was increased in the group of less damaged plants. The size of mutation sector was increased with reduction in number of seeds per M_1 plant and the mutants were occurred at random in all the parts of M_1 plants. For the effective selection of mutants in soybean mutation breeding, the M_1 seeds should be harvested from the radiation damaged M_1 plants with the application of higher doses of mutagens, and handling M_2 generation by bulk population method is recommendable.

  • PDF