• 제목/요약/키워드: planetary ball mill

검색결과 71건 처리시간 0.021초

세 가지 매체형 분쇄기를 이용한 분쇄공정에서 다양한 실험 조건에 대한 입자형상변화 (Particle Morphology via Change of Ground Particle for Various Experimental Conditions During a Grinding Process by Three Kinds of Media Mills)

  • 사꾸라기시오리;보르암갈란;이재현;최희규
    • 한국입자에어로졸학회지
    • /
    • 제11권1호
    • /
    • pp.9-19
    • /
    • 2015
  • This study investigated the effects of ball mill operation condition on the morphology of raw powders in the dry-type milling process using three types of ball mills traditional ball mill, stirred ball mill and planetary ball mill. Furthermore, since spherical powders offer the best combination of high hardness and high density, the optimum milling condition to produce sphere-shaped powders was studied. The applied rotation speed ranged from 200rpm (low rotation speed) to 700rpm (high rotation speed). The used ball size ranged from 1mm to 5mm. The metal powder morphology was studied using SEM, XRD and PSA. The aimed spherical powders could be obtained under the optimum experimental conditions: traditional ball mill(200rpm, 1mm ball), planetary ball mill (500rpm, 1mm ball) and also planetary ball mill (700rpm, 1 and 3 mm ball). The results show to the development of new material using spherical type copper powder/CNT composites for air-craft and automotive applications.

A comparative study of grinding mill type on aluminium powders with carbon nano tube: traditional ball mill and planetary ball mill

  • 최희규;최경필;배대형;이승백;이웅;김성수
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.27.2-27.2
    • /
    • 2009
  • Grinding characteristics for aluminium and carbon nanotubes (CNTs) powder during traditional and planetary ball milling investigated from the viewpoint of particle behaviour with the aimat developing CNT-dispersed samples ground based on powder metallurgy routes.In this work, a comparison between the pure aluminium and CNT input aluminium grinding was carried out to determine grinding time effect on size reduction.We observed that the use of the curly small-diameter multi-walled carbon nanotubes (MWCNTs) attributed to the beneficial role of the MWCNTs as grinding aids. It is suggested that careful choices of the sizes of CNTs and Al powders would allow fine-grinding of composite particles with uniformly distributed CNT reinforcements thereby ensuring improved properties of the final composites produced by low-temperature compacting.

  • PDF

유성볼밀공정으로 제조된 Fe-TiC 복합재료 분말 (Fe-TiC Composite Powders Fabricated by Planetary Ball Mill Processing)

  • 이병훈;안기봉;배상원;배선우;;김병기;김지순
    • 한국분말재료학회지
    • /
    • 제22권3호
    • /
    • pp.208-215
    • /
    • 2015
  • Fe-TiC composite powders were fabricated by planetary ball mill processing. Two kinds of powder mixtures were prepared from the starting materials of (a) (Fe, TiC) powders and (b) (Fe, $TiH_2$, Carbon) powders, respectively. Milling speed (300, 500 and 700 rpm) and time (1, 2, and 3 h) were varied. For (Fe, $TiH_2$, Carbon) powders, an in situ reaction synthesis of TiC after the planetary ball mill processing was added to obtain a homogeneous distribution of ultrafine TiC particulates in Fe matrix. Powder characteristics such as particle size, size distribution, shape, and mixing homogeneity were investigated.

다양한 매체형 분쇄기를 이용한 건식 분쇄공정에서 장비의 표준화를 위한 분쇄실험의 비교 연구 (Comparative Study for the Standardization of Grinding Equipment During Dry Grinding Process by Various Grinding Mills)

  • 보르암갈란;사꾸라기시오리;이재현;최희규
    • 한국재료학회지
    • /
    • 제25권6호
    • /
    • pp.305-316
    • /
    • 2015
  • The study of grinding behavior characteristics on the metal powders has recently gained scientific interest due to their useful applications to enhance advanced nano materials and components. This could significantly improve the property of new mechatronics integrated materials and components. So, a new evaluation method for standardizing grinding equipment and a comparative study for the grinding experiment during the grinding process with various grinding mills were investigated. The series of grinding experiments were carried out by a traditional ball mill, stirred ball mill, and planetary ball mill with various experimental conditions. The relationship between the standardization of equipment and experimental results showed very significant conclusions. Furthermore, the comparative study on the grinding experiment, which investigated changes in particle size, particle morphology, and crystal structure of materials with changes in experimental conditions for grinding equipment, found that the value of particle size distribution is related to the various experimental conditions as a revolution speed of grinding mill and media size.

La2O3의 메카노케미컬 합성에 의한 LaNiO3결정상 생성 (Mechanochemical Synthesis of LaNiO3 Crystalline Phase from Mixture of La2O3sub> and NiO)

  • 김대영;김강언;이명교;정수태
    • 한국전기전자재료학회논문지
    • /
    • 제16권8호
    • /
    • pp.681-687
    • /
    • 2003
  • The syntheses of LaNiO$_3$Perovskite crystalline phase from mixtures of La$_2$O$_3$and NiO via it mechanochemical(used planetary mill) and a wet ball mill process were investigated. A single and stable LaNiO$_3$perovskite crystalline phase was successfully prepared by using a heat free mechanochemical process which produced a fine amorphous powder, while that phase was not formed in a wet ball mill process which needed heat treatment ranging from 500 to 150$0^{\circ}C$ and produced a coarse powder. It was shown that the LaNiO$_3$ceramics made of the mechanochemically synthesized powder possesed a good metallic characteristic.

Effect of Milling Speed on the Structural and Magnetic Properties of Ni70Mn30 Alloy Prepared by Planetary Ball Mill Method

  • Hussain, Imad;Lee, Ji Eun;Jeon, So Eun;Cho, Hyun Ji;Huh, Seok-Hwan;Koo, Bon Heun;Lee, Chan Gyu
    • 한국재료학회지
    • /
    • 제28권10호
    • /
    • pp.539-543
    • /
    • 2018
  • We report the structural, morphological and magnetic properties of the $Ni_{70}Mn_{30}$ alloy prepared by Planetary Ball Mill method. Keeping the milling time constant for 30 h, the effect of different ball milling speeds on the synthesis and magnetic properties of the samples was thoroughly investigated. A remarkable variation in the morphology and average particle size was observed with the increase in milling speed. For the samples ball milled at 200 and 300 rpm, the average particle size and hence magnetization were decreased due to the increased lattice strain, distortion and surface effects which became prominent due to the increase in the thickness of the outer magnetically dead layer. For the samples ball milled at 400, 500 and 600 rpm however, the average particle size and hence magnetization were increased. This increased magnetization was attributed to the reduced surface area to volume ratio that ultimately led to the enhanced ferromagnetic interactions. The maximum saturation magnetization (75 emu/g at 1 T applied field) observed for the sample ball milled at 600 rpm and the low value of coercivity makes this material useful as soft magnetic material.

분쇄방식에 따른 LaAIO3 세라믹의 합성과 유전특성 (Synthesis and Dielectric Properties of LaAIO3 Ceramics with Grinding Methods)

  • 조정호;최상수;김강언;정수태;조상희
    • 한국전기전자재료학회논문지
    • /
    • 제15권3호
    • /
    • pp.238-243
    • /
    • 2002
  • The dielectric properties and synthesis of $LaAIO_3$ ceramics from mixtures of $La_2O_3$ and $AI(OH)_3$ via ground(planetary ball mill) and unground(wet ball mill) were investigated. The single phase $LaAIO_3$ of ground powder was formed at $1000^{\circ}C$, while that of unground powder was formed at $1300^{\circ}C$. Density and grains of ground sample showed 98% of theory density and a uniform size of 0.75\mu\textrm{m}$, respectively, However those of unground sample showed 93% and non-uniform sizes of 4-5 $\mu\textrm{m}$. Dielectric constant and temperature coefficient of capacitance ($\tau$c) of both ground and unground samples were 21~22 and +70~74 ppm$/^{\circ}C$, respectively. Dielectric loss of ground sample(0.0004) was 10 times as low as that of unground sample(0.003) due to a uniform and small gram size.

용융법과 기계적 합금화에 의한 열전재료 Mg3Sb2의 제조 (Synthesis of thermoelectric Mg3Sb2 by melting and mechanical alloying)

  • 김인기
    • 한국결정성장학회지
    • /
    • 제22권4호
    • /
    • pp.207-212
    • /
    • 2012
  • Mg와 Sb 분말을 사용하여 1173 K에서 결정성이 좋은 단일상의 $Mg_3Sb_2$ 합금을 제조하였다. 이 합금의 열전성능지수 zT는 온도상승에 따라 크게 증가하였고 593 K에서 $2.39{\times}10^{-2}$의 값을 나타내었다. 얻어진 $Mg_3Sb_2$ 합금을 planetary ball mill에서 12~48시간 볼밀링할 경우 주 결정상 $Mg_3Sb_2$는 유지가 되었으나 결정성이 나빠졌고 금속원소 Sb상이 나타났다. Mg와 Sb를 섞고 24시간 볼밀링에 의한 합금화 방법으로 합성할 경우 원소금속 Sb가 나타나지 않은 $Mg_3Sb_2$ 결정상을 얻을 수 있었다.

Kaolinite-Aluminum Trihydroxide의 혼합물의 혼합분쇄효과 및 Mullite의 생성에 미치는 영향 (Mixed Grinding Effect on Kaolinite-Aluminum Trihydroxide Mixture and Its Influence on Mullite Formation)

  • 류호진
    • 한국세라믹학회지
    • /
    • 제34권2호
    • /
    • pp.195-201
    • /
    • 1997
  • 본 논문은 kaolinite(Al2O3.2SiO2.2H2O)-aluminum trihydroxide(Al(OH3) 혼합물을 소결전에 planetary ball mill을 사용하여 건식 중에서 혼합분쇄한 후, 이 혼합물을 사용하여 소결하는 동안에 mullite의 생성거동을 연구한 것이다. 혼합물의 입자크기 감소는 분쇄 초기에 현저하였으며, 분쇄기간이 증가함에 따라 미립자들이 응집하는 현상을 보였다. 혼합물의 결정구조는 planetary ball milling에 의한 혼합분쇄에 따라 쉽게 비정질화되었으며, 비정질화되는 정도는 분쇄시간이 증가함에 따라 증가하였다. Kaolinite의 초기 분순물로 존재했던 anatase를 제외한 mullite상만이 상대적으로 낮은 소결온도인 1523K에서 혼합분쇄한 혼합물의 소결체에서 나타났다. 한편, 분쇄하지 않은 혼합물의 소결체의 경우는 이 온도에서 mullite 상 이외에 corundum, cristobalite, Al-Si spinel상이 공존하는 형태로 나타났다. 따라서, 혼합분쇄처리는 출발원료의 미소 규모에 있어서 균일혼합 및 분산을 촉진시키며, 또한 결정구조변화에 따른 열분해온도의 변화일으켜, 상대적으로 낮은 온도에서 고순도의 mullite를 직접 생성하는데 효과적이였다.

  • PDF

The Structural Characterization of Pristine and Ground Graphenes with Different Grinding Speed in Planetary Ball Mill

  • Lee, Tae-Jin;Munkhshur, Myekhlai;Tanshen, Md. Riyad;Lee, Dae-Chul;Chung, Han-Shik;Jeong, Hyo-Min
    • 동력기계공학회지
    • /
    • 제17권5호
    • /
    • pp.23-29
    • /
    • 2013
  • The activation process is the key to graphene's practical application. In this study, the effect of grinding speed in planetary ball mill on structural integrity of graphene has been studied at various grinding speed such as 100 rpm, 200 rpm, 300 rpm, 400 rpm and 500 rpm. The morphology and structure of pristine graphene and ground graphenes were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy respectively. According to these results, structural properties of graphene were improved when grinding speed was increased.