DOI QR코드

DOI QR Code

Effect of Milling Speed on the Structural and Magnetic Properties of Ni70Mn30 Alloy Prepared by Planetary Ball Mill Method

  • Hussain, Imad (School of Materials Science and Engineering, Changwon National University) ;
  • Lee, Ji Eun (School of Materials Science and Engineering, Changwon National University) ;
  • Jeon, So Eun (School of Materials Science and Engineering, Changwon National University) ;
  • Cho, Hyun Ji (School of Materials Science and Engineering, Changwon National University) ;
  • Huh, Seok-Hwan (School of Mechatronics Conversion Engineering, Changwon National University) ;
  • Koo, Bon Heun (School of Materials Science and Engineering, Changwon National University) ;
  • Lee, Chan Gyu (School of Materials Science and Engineering, Changwon National University)
  • Received : 2018.07.16
  • Accepted : 2018.09.12
  • Published : 2018.10.27

Abstract

We report the structural, morphological and magnetic properties of the $Ni_{70}Mn_{30}$ alloy prepared by Planetary Ball Mill method. Keeping the milling time constant for 30 h, the effect of different ball milling speeds on the synthesis and magnetic properties of the samples was thoroughly investigated. A remarkable variation in the morphology and average particle size was observed with the increase in milling speed. For the samples ball milled at 200 and 300 rpm, the average particle size and hence magnetization were decreased due to the increased lattice strain, distortion and surface effects which became prominent due to the increase in the thickness of the outer magnetically dead layer. For the samples ball milled at 400, 500 and 600 rpm however, the average particle size and hence magnetization were increased. This increased magnetization was attributed to the reduced surface area to volume ratio that ultimately led to the enhanced ferromagnetic interactions. The maximum saturation magnetization (75 emu/g at 1 T applied field) observed for the sample ball milled at 600 rpm and the low value of coercivity makes this material useful as soft magnetic material.

Keywords

References

  1. K. Ullakko, J. K. Huang, C. Kantner, R. C. O. Handley and V. V. Kokorin, Appl. Phys. Lett., 69, 1966 (1996). https://doi.org/10.1063/1.117637
  2. R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata and K. Ishida, Nature (London)., 439, 957 (2006). https://doi.org/10.1038/nature04493
  3. T. Krenke, E. Dumen, M. Acet, E. F. Wassermann, X. Moya, L. Manosa and A. Planes, Nature Mat., 4, 450 (2005). https://doi.org/10.1038/nmat1395
  4. R. Sahoo, A. K. Nayak, K. G. Suresh and A. K. Nigam, J. Magn. Magn. Mater., 324, 1267 (2012). https://doi.org/10.1016/j.jmmm.2011.11.025
  5. S. Y. Yu, L. Ma, G. D. Liu, J. L. Chen, Z. X. Cao, G. H. Wu, B. Zhang and X. X. Zhang, Appl. Phys. Lett., 90, 242501 (2007). https://doi.org/10.1063/1.2748095
  6. R. Sahoo, A. K. Nayak, K. G. Suresh and A. K. Nigam, J. Appl. Phys., 109, 07A921 (2011). https://doi.org/10.1063/1.3554219
  7. M. Khan, I. Dubenko, S. Stadler and N. Ali, Appl. Phys. Lett., 91, 072510 (2007). https://doi.org/10.1063/1.2772233
  8. A. K. Nayak, K. G. Suresh and A. K. Nigam, J. Phys. D: Appl. Phys., 42, 115004 (2009). https://doi.org/10.1088/0022-3727/42/11/115004
  9. C. B. Zimm and M. B. Stearns, J. Magn. Magn. Mater., 50, 223 (1985). https://doi.org/10.1016/0304-8853(85)90186-6
  10. T. Krenke, E. Duman, M. Acet, EF. Wassermann, X. Moya, L. Manosa, L. Planes, E. Suard and B. Ouladdiaf, Phys. Rev. B., 75, 104414 (2010).
  11. V. K. Sharma, M. K. Chattopadhyay, R. Kumar, T. Ganguli, P. Tiwari and S. B. Roy, J. Phys.: Condens. Matter., 20, 425210 (2008). https://doi.org/10.1088/0953-8984/20/42/425210
  12. K. Koike, M. Ohtsuka, Y. Honda, H. Katsuyama, M. Matsumoto, K. Itagaki, Y. Adachi and H. Morita, J. Magn. Magn. Mater., 310, e996 (2007). https://doi.org/10.1016/j.jmmm.2006.10.1047
  13. K. M. Kishnan, A. B. Pakhomov, Y. Bhao, P. Blomqvist, Y. Chun, M. Gonzales, K. Griffin, X. Ji and B. K. Roberts, J. Mater. Sci., 41, 793 (2006). https://doi.org/10.1007/s10853-006-6564-1
  14. C. W. Lim and I. S. Lee, Nano Today., 5, 412 (2010). https://doi.org/10.1016/j.nantod.2010.08.008
  15. J. A. Bas, J. A. Calero and M. J. Dougan, J. Magn. Magn. Mater., 254, 391 (2003).
  16. Z. W. Liu, C. Chen, Z. G. Zheng, B. H. Tan and R. V. Ramanujan, J. Mater. Sci., 47, 2333 (2012). https://doi.org/10.1007/s10853-011-6049-8
  17. Q. Zeng, I. Baker, J. B. Cui and Z. C. Yan, J. Magn. Magn. Mater., 308, 214 (2007). https://doi.org/10.1016/j.jmmm.2006.05.032
  18. T. Saito, J. Appl. Phys., 93, 8686 (2003). https://doi.org/10.1063/1.1544526
  19. Z. C. Yan, Y. Huang, Y. Zhang, G. C. Hadjipanayis, W. Soffa and D. Weller, Scr. Mater., 53, 463 (2005). https://doi.org/10.1016/j.scriptamat.2005.04.045
  20. Q. Zeng, I. Baker and Z. C. Yan, J. Appl. Phys., 99, 08E902 (2006). https://doi.org/10.1063/1.2159187
  21. A. Chaturvedi, R. Yaqub, and I. Baker, J. Phys.: Condens. Matter., 26, 064201 (2014). https://doi.org/10.1088/0953-8984/26/6/064201
  22. C. Suryanarayana, Prog. Mater. Sci., 46, 1 (2001). https://doi.org/10.1016/S0079-6425(99)00010-9
  23. B. Tian, F. Chen, Y. Lie and Y. F. Zheng, Mater. Lett., 62, 2851 (2008). https://doi.org/10.1016/j.matlet.2008.01.071
  24. A. L. Alves, E. C. Passamani, V. P. Nascimento, A. Y. Takeuchi and C. Larica, J. Phys. D., 43, 345001 (2010). https://doi.org/10.1088/0022-3727/43/34/345001
  25. D. Saini, S. Singh, M. K. Banerjee and K. Sachdev, J. Nano-Electron. Phys., 9, 03025 (2017).
  26. K. V. Peruman and M. Mahendran, Pure Appl. Chem., 83, 2071 (2011). https://doi.org/10.1351/PAC-CON-11-04-04
  27. B. L. Ahuja, B. K. Sharma, S. Mathur, N. L. Heda, M. Itou, A. Andrejczuk, Y. Sakurai, A. Chakrabarti, S. Banik, A. M. Awasthi and S. R. Barman. Phys. Rev. B., 75, 134403 (2007). https://doi.org/10.1103/PhysRevB.75.134403
  28. S. R. Barman, S. Banik and A. Chakrabarti. Phys. Rev. B., 72, 184410 (2005). https://doi.org/10.1103/PhysRevB.72.184410