Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.10.539

Effect of Milling Speed on the Structural and Magnetic Properties of Ni70Mn30 Alloy Prepared by Planetary Ball Mill Method  

Hussain, Imad (School of Materials Science and Engineering, Changwon National University)
Lee, Ji Eun (School of Materials Science and Engineering, Changwon National University)
Jeon, So Eun (School of Materials Science and Engineering, Changwon National University)
Cho, Hyun Ji (School of Materials Science and Engineering, Changwon National University)
Huh, Seok-Hwan (School of Mechatronics Conversion Engineering, Changwon National University)
Koo, Bon Heun (School of Materials Science and Engineering, Changwon National University)
Lee, Chan Gyu (School of Materials Science and Engineering, Changwon National University)
Publication Information
Korean Journal of Materials Research / v.28, no.10, 2018 , pp. 539-543 More about this Journal
Abstract
We report the structural, morphological and magnetic properties of the $Ni_{70}Mn_{30}$ alloy prepared by Planetary Ball Mill method. Keeping the milling time constant for 30 h, the effect of different ball milling speeds on the synthesis and magnetic properties of the samples was thoroughly investigated. A remarkable variation in the morphology and average particle size was observed with the increase in milling speed. For the samples ball milled at 200 and 300 rpm, the average particle size and hence magnetization were decreased due to the increased lattice strain, distortion and surface effects which became prominent due to the increase in the thickness of the outer magnetically dead layer. For the samples ball milled at 400, 500 and 600 rpm however, the average particle size and hence magnetization were increased. This increased magnetization was attributed to the reduced surface area to volume ratio that ultimately led to the enhanced ferromagnetic interactions. The maximum saturation magnetization (75 emu/g at 1 T applied field) observed for the sample ball milled at 600 rpm and the low value of coercivity makes this material useful as soft magnetic material.
Keywords
planetary ball mill; magnetic properties; alloying; XRD; SEM;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Ullakko, J. K. Huang, C. Kantner, R. C. O. Handley and V. V. Kokorin, Appl. Phys. Lett., 69, 1966 (1996).   DOI
2 R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata and K. Ishida, Nature (London)., 439, 957 (2006).   DOI
3 T. Krenke, E. Dumen, M. Acet, E. F. Wassermann, X. Moya, L. Manosa and A. Planes, Nature Mat., 4, 450 (2005).   DOI
4 R. Sahoo, A. K. Nayak, K. G. Suresh and A. K. Nigam, J. Magn. Magn. Mater., 324, 1267 (2012).   DOI
5 R. Sahoo, A. K. Nayak, K. G. Suresh and A. K. Nigam, J. Appl. Phys., 109, 07A921 (2011).   DOI
6 M. Khan, I. Dubenko, S. Stadler and N. Ali, Appl. Phys. Lett., 91, 072510 (2007).   DOI
7 A. K. Nayak, K. G. Suresh and A. K. Nigam, J. Phys. D: Appl. Phys., 42, 115004 (2009).   DOI
8 C. B. Zimm and M. B. Stearns, J. Magn. Magn. Mater., 50, 223 (1985).   DOI
9 T. Krenke, E. Duman, M. Acet, EF. Wassermann, X. Moya, L. Manosa, L. Planes, E. Suard and B. Ouladdiaf, Phys. Rev. B., 75, 104414 (2010).
10 V. K. Sharma, M. K. Chattopadhyay, R. Kumar, T. Ganguli, P. Tiwari and S. B. Roy, J. Phys.: Condens. Matter., 20, 425210 (2008).   DOI
11 S. Y. Yu, L. Ma, G. D. Liu, J. L. Chen, Z. X. Cao, G. H. Wu, B. Zhang and X. X. Zhang, Appl. Phys. Lett., 90, 242501 (2007).   DOI
12 K. Koike, M. Ohtsuka, Y. Honda, H. Katsuyama, M. Matsumoto, K. Itagaki, Y. Adachi and H. Morita, J. Magn. Magn. Mater., 310, e996 (2007).   DOI
13 K. M. Kishnan, A. B. Pakhomov, Y. Bhao, P. Blomqvist, Y. Chun, M. Gonzales, K. Griffin, X. Ji and B. K. Roberts, J. Mater. Sci., 41, 793 (2006).   DOI
14 C. W. Lim and I. S. Lee, Nano Today., 5, 412 (2010).   DOI
15 J. A. Bas, J. A. Calero and M. J. Dougan, J. Magn. Magn. Mater., 254, 391 (2003).
16 Z. W. Liu, C. Chen, Z. G. Zheng, B. H. Tan and R. V. Ramanujan, J. Mater. Sci., 47, 2333 (2012).   DOI
17 Q. Zeng, I. Baker, J. B. Cui and Z. C. Yan, J. Magn. Magn. Mater., 308, 214 (2007).   DOI
18 T. Saito, J. Appl. Phys., 93, 8686 (2003).   DOI
19 Z. C. Yan, Y. Huang, Y. Zhang, G. C. Hadjipanayis, W. Soffa and D. Weller, Scr. Mater., 53, 463 (2005).   DOI
20 Q. Zeng, I. Baker and Z. C. Yan, J. Appl. Phys., 99, 08E902 (2006).   DOI
21 A. Chaturvedi, R. Yaqub, and I. Baker, J. Phys.: Condens. Matter., 26, 064201 (2014).   DOI
22 C. Suryanarayana, Prog. Mater. Sci., 46, 1 (2001).   DOI
23 B. Tian, F. Chen, Y. Lie and Y. F. Zheng, Mater. Lett., 62, 2851 (2008).   DOI
24 A. L. Alves, E. C. Passamani, V. P. Nascimento, A. Y. Takeuchi and C. Larica, J. Phys. D., 43, 345001 (2010).   DOI
25 D. Saini, S. Singh, M. K. Banerjee and K. Sachdev, J. Nano-Electron. Phys., 9, 03025 (2017).
26 K. V. Peruman and M. Mahendran, Pure Appl. Chem., 83, 2071 (2011).   DOI
27 S. R. Barman, S. Banik and A. Chakrabarti. Phys. Rev. B., 72, 184410 (2005).   DOI
28 B. L. Ahuja, B. K. Sharma, S. Mathur, N. L. Heda, M. Itou, A. Andrejczuk, Y. Sakurai, A. Chakrabarti, S. Banik, A. M. Awasthi and S. R. Barman. Phys. Rev. B., 75, 134403 (2007).   DOI