• Title/Summary/Keyword: plane-curved structures

Search Result 45, Processing Time 0.018 seconds

Multistable Microactuators Functioning on the Basis of Electromagnetic Lorentz Force: Nonlinear Structural and Electrothermal Analyses (전자기 로렌츠력을 이용한 다중안정성 마이크로 액추에이터의 비선형 구조 및 전기-열 해석)

  • Han, Jeong-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1119-1127
    • /
    • 2010
  • In this paper, the design and nonlinear simulation of a multistable electromagnetic microactuator, which provides four stable equilibrium positions within its operating range, have been discussed. Quadstable actuator motion has been made possible by using both X- and Y-directional bistable structures with snapping curved beams. Two pairs of the curved beams are attached to an inner frame in both X- and Y-directions to realize independent bistable behavior in each direction. For the actuation of the actuator at the micrometer scale, an electromagnetic actuation method in which Lorentz force is taken into consideration was used. By using this method, micrometer-stroke quadstability in a plane parallel to a substrate was possible. The feasibility of designing an actuator that can realize quadstable motion by using the electromagnetic actuation method has been thoroughly clarified by performing nonlinear static and dynamic analyses and electrothermal coupled-field analysis of the multistable microactuator.

Geodesic Shape Finding Algorithm for the Pattern Generation of Tension Membrane Structures (막구조물의 재단도를 위한 측지선 형상해석 알고리즘)

  • Lee, Kyung-Soo;Han, Sang-Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.33-42
    • /
    • 2010
  • Patterning with a geodesic line is essential for economical or efficient usage of membrane materialsin fabric tension membrane structural engineering and analysis. The numerical algorithm to determine the geodesic line for membrane structures is generally classified into two. The first algorithm finds a non-linear shape using a fictitious geodesic element with an initial pre-stress, and the other algorithm is the geodesic line cutting or searching algorithm for arbitrarily curved 3D surface shapes. These two algorithms are still being used only for the three-node plane stress membrane element, and not for the four-node element. The lack of a numerical algorithm for geodesic lines with four-node membrane elements is the main reason for the infrequent use of the four-node membrane element in membrane structural engineering and design. In this paper, a modified numerical algorithm is proposed for the generation of a geodesic line that can be applied to three- or four-node elements at the same time. The explicit non-linear static Dynamic Relaxation Method (DRM) was applied to the non-linear geodesic shape-finding analysis by introducing the fictitiously tensioned 'strings' along the desired seams with the three- or four-node membrane element. The proposed algorithm was used for the numerical example for the non-linear geodesic shape-finding and patterning analysis to demonstrate the accuracy and efficiency, and thus, the potential, of the algorithm. The proposed geodesic shape-finding algorithm may improve the applicability of the four-node membrane element for membrane structural engineering and design analysis simultaneously in terms of the shape-finding analysis, the stress analysis, and the patterning analysis.

Free Vibration Analysis of Circular Arches Considering Effects of Midsurface Extension and Rotatory Inertia Using the Method of Differential Quadrature (미분구적법을 이용 중면신장 및 회전관성의 영향을 고려한 원형아치의 고유진동해석)

  • Kang, Ki-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • Curved beams are increasingly used in buildings, vehicles, ships, and aircraft, which has resulted in considerable effort being directed toward developing an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic circular arches has been the subject of a large number of investigations. One of the efficient procedures for the solution of ordinary differential equations or partial differential equations is the differential quadrature method DQM. This method has been applied to a large number of cases to overcome the difficulties of the complex computer algorithms, as well as excessive use of storage due to conditions of non-linear geometries, loadings, or material properties. This study uses DQM to analyze the in-plane vibration of the circular arches considering the effects of midsurface extension and rotatory inertia. Fundamental frequency parameters are calculated for the member with various parameter ratios, boundary conditions, and opening angles. The solutions from DQM are compared with exact solutions or other numerical solutions for cases in which they are available and given to analyze the effects of midsurface extension and rotatory inertia on the frequency parameters of the circular arches.

Delineation of the Slip Weak Zone of Land Creeping with Integrated Geophysical Methods and Slope Stability Analysis (복합 지구물리탐사와 사면 안정해석 자료를 이용한 땅밀림 지역의 활동연약대 파악)

  • Lee, Sun-Joong;Kim, Ji-Soo;Kim, Kwan-Soo;Kwon, Il-Ryong
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.289-302
    • /
    • 2020
  • To determine the shallow subsurface structure and sliding surface of land creeping in 2016 at Hadong-gun, Gyeongsangnam-do, geophysical surveys (electric resistivity, and refraction seismic methods, borehole televiewer) and slope stability analysis were conducted. The subsurface structure delineated with borehole lithologies and seismic velocity structures provided the information that the sediment layer on the top of the slope was rather as thick as 20 m and the underlying weathered rock (anorthosite) was thinner than 1 m. Based on the tension cracks observed during the geological mapping, televiewer scanning was performed at the borehole BH-2 and detected the intensive fracture zones at the ground-water level, associated with the slip weak zones mapped in dipole-dipole electrical resistivity section. Downslope sliding and slightly upward pushing at the apex of high resistive bedrock explains the curved slip plane of the land creeping. Such a convex structure might play a role of natural toe abutment for preventing the downward development of slip weak zones. In slope stability analysis, the safety factors of the slip weak zone are calculated with varying the groundwater levels for dry and rainy seasons and the downslope is founded to be unstable with safety factor of 0.89 due to fully saturated material in rainy season.

Extracting Silhouettes of a Polyhedral Model from a Curved Viewpoint Trajectory (곡선 궤적의 이동 관측점에 대한 다면체 모델의 윤곽선 추출)

  • Kim, Gu-Jin;Baek, Nak-Hun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.2
    • /
    • pp.1-7
    • /
    • 2002
  • The fast extraction of the silhouettes of a model is very useful for many applications in computer graphics and animation. In this paper, we present an efficient algorithm to compute a sequence of perspective silhouettes for a polyhedral model from a moving viewpoint. The viewpoint is assumed to move along a trajectory q(t), which is a space curve of a time parameter t. Then, we can compute the time-intervals for each edge of the model to be contained in the silhouette by two major computations: (i) intersecting q(t) with two planes and (ii) a number of dot products. If q(t) is a curve of degree n, then there are at most of n + 1 time-intervals for an edge to be in a silhouette. For each time point $t_i$ we can extract silhouette edges by searching the intervals containing $t_i$ among the computed intervals. For the efficient search, we propose two kinds of data structures for storing the intervals: an interval tree and an array. Our algorithm can be easily extended to compute the parallel silhouettes with minor modifications.

  • PDF