Browse > Article
http://dx.doi.org/10.3795/KSME-A.2010.34.8.1119

Multistable Microactuators Functioning on the Basis of Electromagnetic Lorentz Force: Nonlinear Structural and Electrothermal Analyses  

Han, Jeong-Sam (Dept. of Mechanical Design Engineering, Andong Nat'l Univ.)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.34, no.8, 2010 , pp. 1119-1127 More about this Journal
Abstract
In this paper, the design and nonlinear simulation of a multistable electromagnetic microactuator, which provides four stable equilibrium positions within its operating range, have been discussed. Quadstable actuator motion has been made possible by using both X- and Y-directional bistable structures with snapping curved beams. Two pairs of the curved beams are attached to an inner frame in both X- and Y-directions to realize independent bistable behavior in each direction. For the actuation of the actuator at the micrometer scale, an electromagnetic actuation method in which Lorentz force is taken into consideration was used. By using this method, micrometer-stroke quadstability in a plane parallel to a substrate was possible. The feasibility of designing an actuator that can realize quadstable motion by using the electromagnetic actuation method has been thoroughly clarified by performing nonlinear static and dynamic analyses and electrothermal coupled-field analysis of the multistable microactuator.
Keywords
Electromagnetic Lorentz Force; Bistability; Multistability; Quadstability; Arc-length Method; Electro-thermal Analysis; Transient Analysis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Debeda, H., Freyhold, T. V., Mohr, J., Wallrabe, U. and Wengelink, J., 1999, "Development of Miniaturized Piezoelectric Actuators for Optical Applications Realized Using LIGA Technology," J. Microelectromech. Syst., Vol. 8, No. 3, pp. 258-263.   DOI   ScienceOn
2 ANSYS, 2003, ANSYS Theory Reference 7.1, (ANSYS Inc).
3 Casals-Terre, J. and Shkel, A. M., 2004, ″Dynamic Analysis of a Snap-Action Micromechanism,″ IEEE Sensors, Vienna, Oct. 2004, pp. 1245-1248.
4 Goll, C., Bacher, W., Bustgens, B., Maas, D., Menz, W. and Schomburg, W. K., 1996, ″Microvalves with Bistable Buckled Polymer Diaphragms,″ J. Micromech. Microeng., Vol. 6, pp. 77-79.   DOI   ScienceOn
5 Halg, B., 1990, ″On a Nonvolatile Memory Cell Based on Micro-Electro-Mechanics,″ Proc. IEEE Micro Electro Mechanical Systems Workshop, pp 172-176.
6 Hoffman, M., Kopka, P. and Voges, E., 1999, ″Bistable Micromechanical Fiber-Optic Switches on Silicon with Thermal Actuators,″ Sensors Actuators (A), Vol. 78, No. 1, pp. 28-35.   DOI   ScienceOn
7 Brenner, M. P., Lang, J. H., Li, J., Qiu, J. and Slocum, A. H., 2003 ″Optimal Design of a Bistable Switch,″ PNAS, Vol. 100, No. 17, pp. 9663-9667.   DOI   ScienceOn
8 Ko, J. S., Lee, M. L., Lee, D. S., Choi, C. A., and Kim, Y. T., 2002, ″Development and Application of Laterally Driven Electromagnetic Microactuator,″ Appl. Phys. Lett., 81, pp. 547-549.   DOI   ScienceOn
9 Han, J. S., Ko, J. S., Kim, Y. T. and Kwak, B. M., 2002, ″Parametric Study and Optimization of a Micro-Optical Switch with a Laterally Driven Electromagnetic Microactuator,″ J. Micromech. Microeng., Vol. 12, pp. 939-947.   DOI   ScienceOn
10 Akiyama, T., Staufer, U. and deRooij, N. F., 2000, "Atomic Force Microscopy Using an Integrated Comb-Shape Electrostatic Actuator for High-Speed Feedback Motion," Appl. Phys. Lett., Vol. 76, No. 21, pp. 31-41.   DOI   ScienceOn
11 Vangbo, M. and Backlund, Y., 1998, ″A Lateral Symmetrically Bistable Buckled Beam,″ J. Micromech. Microeng., Vol. 8, pp. 29-32.   DOI   ScienceOn
12 Jeong, O. C. and Yang, S. S., 2000, "Fabrication and Test of a Thermopneumatic Micropump with a Corrugated $p^+$ Diaphram," Sensors Actuators (A), Vol. 83, pp. 249-255.   DOI   ScienceOn
13 Qiu, J., Lang, J. H., Slocum, A. H. and Struempler, R., 2003, ″A High-Current Electrothermal Bistable MEMS Relay,″ Proc. IEEE MEMS 2003, pp. 64-67.
14 Vangbo, M., 1998, ″An Analytical Analysis of a Compressed Bistable Buckled Beam,″ Sensors Actuators (A), Vol. 69, No. 3, pp. 212-216.   DOI   ScienceOn
15 Schomburg, W. K. and Goll, C., 1998, ″Design Optimization of Bistable Microdiaphragm Valves,″ Sensors Actuators (A), Vol. 64, No. 3, pp. 259-264.   DOI   ScienceOn
16 Song, G. E., Kim, J. S., Kim, K. H. and Lee, Y. P., 2004, ″Development and Analysis for Micro Actuator Using Buckling Membrane and Phase Change,″ Transactions of the KSME B, 28(6), pp. 638-645.   과학기술학회마을   DOI   ScienceOn
17 Lee, J. H., Lee, M. L., Jang, W. I., Choi, C. A. and Joo, J. W., 1999, ″Bi-Stable Planar Polysilicon Micro-Actuators with Shallow Arch-Shaped Leaf Springs,″ Proc. SPIE, Vol. 3876, pp. 274-279.   DOI
18 Jensen, B. D., Howell, L. L. and Salmon, L. G., 1999, ″Design of Two-Link, In-Plane, Bistable Compliant Micro-Mechanisms,″ J. Mech. Des., Vol. 121, No. 3, pp. 416-423.   DOI
19 Gomm, T., Howell, L. L. and Selfridge, R. H., 2002, ″In-Plane Linear Displacement Bistable Microrelay,″ J. Micromech. Microeng., Vol. 12, pp. 257-264.   DOI   ScienceOn
20 Masters, N. D. and Howell, L. L., 2003, ″A Self-Retracting Fully-Compliant Bistable Micromechanism,″ J. Microelectromech. Syst., Vol. 12, pp. 273-280.   DOI   ScienceOn
21 Hwang, I. H., Shim, Y. S. and Lee, J. H., 2003, ″Modeling and Experimental Characterization of the Chevron-Type bi-Stable Microactuator,″ J. Micromech. Microeng., Vol. 13, pp. 948-954.   DOI   ScienceOn
22 Qiu, J., Lang, J. H. and Slocum, A. H., 2004, ″A Curved-Beam Bistable Mechanism,″ J. Microelectro-Mech. Syst., Vol. 13, No. 2, pp. 137-146.   DOI   ScienceOn
23 Han, J. S., 2007, ″Design, Simulation and Fabrication of a Quadstable Monolithic Mechanism,″ Transactions of the KSME A, 31(5), pp. 617-624.   과학기술학회마을   DOI   ScienceOn