• Title/Summary/Keyword: plane stress

Search Result 1,384, Processing Time 0.023 seconds

Study on Residual Stress Redistribution by Changing of Distance and Restraint degree between Fillet and Butt weldment (필렛 및 맞대기 용접부의 간격 및 구속도에 따른 잔류응력 재분포 특성에 관한 연구)

  • Jin, Hyung-Kook;Lee, Dong-Ju;Shin, Sang-Beom
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.94-94
    • /
    • 2009
  • The purpose of this study is to identify the principal factor controlling transverse residual stress at the weldment for joining unit hull blocks. In order to do it, the comprehensive FE analyses were carried out to evaluate the effect of distance between fillet and butt weldments, in-plane and out-of-plane restraint degree on the amount and distribution of transverse residual stress in way of the weldments between unit hull blocks. In accordance with FEA results, principal factor controlling the amount of transverse residual stress at the weldments was identified as in-plane restraint degree of butt weldment for unit blocks. The effect of other variables on the transverse residual stress was very small relatively. Based on the results, it can be concluded that the proper distance between fillet weldment for stiffener and butt weldment for joining unit blocks should be determined in consideration of in-plane restraint intensity of butt weldments.

  • PDF

Fatigue Strength of Fillet Weldment under Out-of-plane Bending Load (필릿 용접부의 면외굽힘하중에 대한 피로강도)

  • 강성원;한상혁;김화수;백영민
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.1
    • /
    • pp.28-35
    • /
    • 2003
  • Fatigue tests of transverse fillet weldment were performed under out-of-plane bending loads. Significant increase of the fatigue strength was observed under out-of-plane bending loads, compared to the one under in-plane loads (axial loads). Applicability of the crack propagation analysis using LEFM for the surface crack of fillet weldment were investigated as well, in parallel with the fatigue tests. For the rational assessment of the fatigue strength of welded ship structures where combined stresses of the in-plane axial stress and the out-of-plane bending stress are induced simultaneously due to complexity of applied load and structural geometry, further investigation is recommended for the effect of the out-of-plane bending stress on the fatigue strength of weldment.

A Proposal of an Analytical Method for Estimating the Opening Behaviour of Tip-Closed Crack in Compressive Residual Stress by Finite Element Method (압축잔류응력에 의하여 선단부가 닫힌 균열의 개구거동에 대한 유한요소법에 의한 해석방법의 제안)

  • 김응준;박응준;유승현
    • Journal of Welding and Joining
    • /
    • v.21 no.6
    • /
    • pp.71-76
    • /
    • 2003
  • For the purpose of clarifying the influence of welding residual stress to the fatigue crack propagations behaviour, an analytical investigation based on finite element method is performed to examine the opening behaviour of tip-closed crack in the compressive residual stress. A finite element model comprised of contact elements for the crack plane and plane stress elements for the base material is used to evaluate crack opening stress of the crack existing in the residual stress field. Also an analytical method based on the superposition principle to estimate the length of opened part of tip closed crack and the stress distribution adjacent to the crack during uploading is applied to the finite element model. The software for the analysis is ABAQUS, which is a general purpose finite element package. The results show that stresses distributed on the crack surfaces are reduced and approached to zero as the applied stresses are increased up to crack tip opening stress and no mechanical discontinuity is found at the boundary of contact elements and plane stress elements. It is verified that the opening behavior of the fatigue crack in the residual stress can be predicted by finite element method with the proposed analytical method.

P1ane Strain Strength of Fine Sands

  • Yoon, Yeo-Won;Van, Impe W.F
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.5-16
    • /
    • 1996
  • Based on many experimental results on fine silica sands, the strength relation between triaxial and plane strain tests is expressed as a function of both density and mean effective principal stress at failure. Stress ratio of mean normal stress to deviatoric stress at failure is a well defined function of shear angle of friction, This ratio decreases with increasing shear angle of friction. Intermediate principal stress is also expressed in terms of major and minor principal stresses and a relatively good agreement between theoretical and observed angles of failure plane in plane strain test is confirmed.

  • PDF

Deformation of a rectangular plate with an arbitrarily located circular hole under in-plane pure shear loading

  • Yang, Yeong-Bin;Kang, Jae-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.60 no.2
    • /
    • pp.351-363
    • /
    • 2016
  • Exact solutions for stresses, strains, displacements, and the stress concentration factors of a rectangular plate perforated by an arbitrarily located circular hole subjected to in-plane pure shear loading are investigated by two-dimensional theory of elasticity using the Airy stress function. The hoop stresses, strains, and displacements occurring at the edge of the circular hole are computed and plotted. Comparisons are made for the hoop stresses and the stress concentration factors from the present study and those from a rectangular plate with a circular hole under uni-axial and bi-axial uniform tensions and in-plane pure bending moments on two opposite edges.

Comparing the generalized Hoek-Brown and Mohr-Coulomb failure criteria for stress analysis on the rocks failure plane

  • Mohammadi, M.;Tavakoli, H.
    • Geomechanics and Engineering
    • /
    • v.9 no.1
    • /
    • pp.115-124
    • /
    • 2015
  • Determination of mobilized shear strength parameters (that identify stresses on the failure plane) is required for analyzing the stability by limit equilibrium method. Generalized Hoek-Brown (GHB) and Mohr-Coulomb (MC) failure criteria are usually used for obtaining stresses on the plane of failure. In the present paper, the applicability of these criteria for determining the stresses on failure plane is investigated. The comparison is based on stresses on the real failure plane which are obtained from the Mohr stress circle. To do so, 18 sets of data (consist of principal stresses and angle of failure plane) presented in the literature are used. In addition, the values account for (VAF) and the root mean square error (RMSE) indices were calculated to check the determination performance of the obtained results. Values of VAF and RMSE for the normal stresses on the failure plane evaluated from MC are 49% and 31.5 where for GHB are 55% and 30.5, respectively. Also, for the shear stresses on failure plane, they are 74% and 36 for MC, 76% and 34.5 for GHB. Results show that the obtained stresses and angles of failure plane for each criterion differ from real ones, but GHB results are closer to the empirical results. Also, it is inferred that results are affected by the failure envelope not real failure plane. Therefore, obtained shear strength parameters are not mobilized. Finally, a multivariable regressed relation is presented for determining the stresses on the failure plane.

Solution for a circular tunnel in strain-softening rock with seepage forces

  • Wei, Luo;Zo, Jin-feng;An, Wei
    • Geomechanics and Engineering
    • /
    • v.22 no.6
    • /
    • pp.553-564
    • /
    • 2020
  • In this study, a simple numerical approach for a circular tunnel opening in strain-softening surrounding rock is proposed considering out-of-plane stress and seepage force based on Biot's effective stress principle. The plastic region of strain-softening surrounding rock was divided into a finite number of concentric rings, of which the thickness was determined by the internal equilibrium equation. The increments of stress and strain for each ring, starting from the elastic-plastic interface, were obtained by successively incorporating the effect of out-of-plane stress and Biot's effective stress principle. The initial value of the outmost ring was determined using equilibrium and compatibility equations. Based on the Mohr-Coulomb (M-C) and generalized Hoek-Brown (H-B) failure criteria, the stress-increment approach for solving stress, displacement, and plastic radius was improved by considering the effects of Biot's effective stress principle and the nonlinear degradation of strength and deformation parameters in plastic zone incorporating out-of-plane stress. The correctness of the proposed approach is validated by numerical simulation.

Investigation of Plane Strain Fatigue Crack Growth Behavior by Using Side-Grooved Specimens (측면홈 시험편을 이용한 평면 변형률 피로 균열 진전에 관한 연구)

  • 김종한;송지호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.63-69
    • /
    • 1992
  • Plane-strain fatigue crack growth behavior of 7075-76 aluminium alloy was investigated by using side-grooved through-thickness center cracked tension(CCT) specimens. The effect of side-groove on the stress intensity factor value was examined. The effective thickness expression of $B_{e}$= $B_{o}$-( $B_{o}$-( $B_{ o-B_{n}^{2}}$ $B_{o}$ is the most appropriate to evaluate the stress intensity factor of side-grooved CCT specimen for fatigue testing. Fatigue crack growth rates can be well described by the effective stress intensity factor range based on closure measurements, for both side-grooved and uniform thickness specimens. Provided that the thickness of specimen meets the requirements for valid plane-strain fracture toughness, uniform thickness specimen data may be assumed to approximately represent the plane strain through-thickness crack growth behavior.ehavior.r.

Methods to Evaluate Stress Triaxiality from the Side Necking Near the Crack Tip (균열선단 부근의 측면함몰로부터 응력삼축성의 결정 방법)

  • Kim, Dong-Hak;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.1021-1028
    • /
    • 2004
  • Kim et al. suggested an experimental method to determine the Q parameter in situ from the out-of-plane displacement and the in-plane strains on the surface of side necking near the crack tip. In this paper, the procedure to evaluate the stress triaxiality near a crack tip such as the Q parameter is to be polished in the details for simplicity and accuracy. That is, Q and hydrostatic stress are determined only from the out-of-plane displacement, but not using in-plane strain, which is hard to measure. And also, the plastic modulus is determined by an alternative way. Through three-dimensional finite element analyses for a standard CT specimen with 20% side-grooves, the validities of the new procedures are examined in comparison to the old ones. The effect of location where the displacements are measured to determine the stress triaxiality is explored.

The Plane-Deformation Thermal Elasto-Plastic Analysis During Welding of Plate (평판용접에 관한 평면변형 열탄소성 해석)

  • 방한서;한길영
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 1994
  • Welding of structure produces welding residual stresses which influence buckling strength, brittle fracture strength and cold crack on the weld parts. Therefore, it is very important to accurately analyze the residual stress before welding in order to guarantee the safety of weldment. If the weld length is long enough compared to the thickness and the breadth of plate, thermal and mechanical behaviors in the middle portion of the plate are assumed to be uniform along the thickness direction(z-axis). Thus, the following conditions(so-called plane deformation) can be assumed for the plate except near its end;1) distributions of stress and strain are independent on the z-axis;2) plane normal to z-axis before deformation remains plane during and after deformation. In this paper, plane-deformation thermal elasto-plastic problem is formulated by being based on the finite element method. Moreover special regards and paid to the fact that material properties in elastic and plastic region are temperature-dependence. And the method to solve the plane-deformation thermal elasto-plastic problem is shown by using the incremental technique. From the results of analysis, the characterisics of distribution of welding residual stress and plastic strain with the production mechanism are clarified.

  • PDF