• Title/Summary/Keyword: plane stress/strain

Search Result 445, Processing Time 0.027 seconds

Interlaminar stresses and delamination of composite laminates under extension and bending

  • Nguyen, Tien Duong;Nguyen, Dang Hung
    • Structural Engineering and Mechanics
    • /
    • v.25 no.6
    • /
    • pp.733-751
    • /
    • 2007
  • The metis element method (Hung 1978) has been applied to analyse free edge interlaminar stresses and delamination in composite laminates, which are subjected to extension and bending. The paper recalls Lekhnitskii's solution for generalized plane strain state of composite laminate and Wang's singular solution for determination of stress singularity order and of eigen coefficients $C_m$ for delamination problem. Then the formulae of metis displacement finite element in two-dimensional problem are established. Computation of the stress intensity factors and the energy release rates are presented in details. The energy release rate, G, is computed by Irwin's virtual crack technique using metis elements. Finally, results of interlaminar stresses, the three stress intensity factors and the energy release rates for delamination crack in composite laminates under extension and bending are illustrated and compared with the literature to demonstrate the efficiency of the present method.

Dynamics of the oscillating moving load acting on the hydroelastic system consisting of the elastic plate, compressible viscous fluid and rigid wall

  • Akbarov, Surkay D.;Ismailov, Meftun I.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.403-430
    • /
    • 2016
  • This paper studies the dynamics of the lineal-located time-harmonic moving-with-constant-velocity load which acts on the hydro-elastic system consisting of the elastic plate, compressible viscous fluid - strip and rigid wall. The plane-strain state in the plate is considered and its motion is described by employing the exact equations of elastodynamics but the plane-parallel flow of the fluid is described by the linearized Navier-Stokes equations. It is assumed that the velocity and force vectors of the constituents are continuous on the contact plane between the plate and fluid, and impermeability conditions on the rigid wall are satisfied. Numerical results on the velocity and stress distributions on the interface plane are presented and discussed and the focus is on the influence of the effect caused by the interaction between oscillation and moving of the external load. During these discussions, the corresponding earlier results by the authors are used which were obtained in the cases where, on the system under consideration, only the oscillating or moving load acts. In particular, it is established that the magnitude of the aforementioned interaction depends significantly on the vibration phase of the system.

The 3D Surface Crack-Front Constraints in Welded Joins (용접부 3차원 표면균열선단에서의 구속상태)

  • Lee, Hyeong-Il;Seo, Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.144-155
    • /
    • 2000
  • 초록 The validity, of a single parameter such as stress intensity, factor K or J-integral in traditional fracture mechanics depends strongly on the geometry, and loading condition. Therefore the second parameter like T-stress measuring the stress constraint is additionally needed to characterize the general crack-tip fields. While many, research works have been done to verify, the J-T description of elastic-plastic crack-tip stress fields in plane strain specimens, limited works (especially. for bimaterials) have been performed to describe the structural surface crack-front stress fields with the two parameters. On this background, via detailed three dimensional finite element analyses for surface-cracked plates and straight pipes of homogeneous materials and bimaterials under various loadings, we investigate the extended validity or limitation of the two parameter approach. We here first develop a full 3D mesh generating program for semi-elliptical surface cracks, and calculate elastic T-stress from the obtained finite element stress field. Comparing the J-T predictions to the elastic-plastic stresses from 3D finite element analyses. we then confirm the extended validity of fracture mechanics methodology based on the J-T two parameters in characterizing the surface crack-front fields of welded plates and pipes under various loadings.

Theoretical determination of stress around a tensioned grouted anchor in rock

  • Showkati, Alan;Maarefvand, Parviz;Hassani, Hossein
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.441-460
    • /
    • 2015
  • A new theoretical approach for analysis of stress around a tensioned anchor in rock is presented in this paper. The solution has been derived for semi-infinite elastic rock and anchor and for plane strain conditions. The method considers both the anchor head bearing plate and its grouted bond length embedded in depth. The solution of the tensioned rock anchor problem is obtained by superimposing the solutions of two simpler but fundamental problems: A distributed load applied at a finite portion (bearing plate area) of the rock surface and a distributed shear stress applied at the anchor-rock interface along the bond length. The solution of the first problem already exists and the solution of the shear stress distributed along the bond length is found in this study. To acquire a deep understanding of the stress distribution around a tensioned anchor in rock, an illustrative example is solved and stress contours are drawn for stress components. In order to verify the results obtained by the proposed solution, comparisons are made with finite difference method (FDM) results. Very good agreements are observed for the teoretical results in comparison with FDM.

Mechanical response of rockfills in a simulated true triaxial test: A combined FDEM study

  • Ma, Gang;Chang, Xiao-Lin;Zhou, Wei;Ng, Tang-Tat
    • Geomechanics and Engineering
    • /
    • v.7 no.3
    • /
    • pp.317-333
    • /
    • 2014
  • The study of the mechanical behavior of rockfill materials under three-dimensional loading conditions is a current research focus area. This paper presents a microscale numerical study of rockfill deformation and strength characteristics using the Combined Finite-Discrete Element Method (FDEM). Two features unique to this study are the consideration of irregular particle shapes and particle crushability. A polydisperse assembly of irregular polyhedra was prepared to reproduce the mechanical behavior of rockfill materials subjected to axial compression at a constant mean stress for a range of intermediate principal stress ratios in the interval [0, 1]. The simulation results, including the stress-strain characteristics, relationship between principal strains, and principal deviator strains are discussed. The stress-dilatancy behavior is described using a linear dilatancy equation with its material constants varying with the intermediate principal stress ratio. The failure surface in the principal stress space and its traces in the deviatoric and meridian plane are also presented. The modified Lade-Duncan criterion most closely describes the stress points at failure.

A Study on Welding Residual Stress Measurement by Laser Inteferometry and Spot Heating Method (레이저 간섭법과 점 가열법을 이용한 용접부의 잔류응력 측정에 관한 연구)

  • Hong, Kyung-Min;Lee, Dong-Hwan;Kang, Young-June
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.101-108
    • /
    • 2008
  • Residual stress is one of the causes which make defects in engineering components and materials. Many methods have been developing to measure the residual stress. Though these methods provide the information of the residual stress, they also have disadvantage like a little damage, time consumption, etc. In this paper, we devised a new experimental technique to measure residual stress in materials with a combination of laser speckle pattern interferometry and spot heating. The speckle pattern interferometer measures in-plane deformation during the heat provides for much localized stress relief. 3-D shape is used for determining heat temperature and other parameters. The residual stresses are determined by the amount of strain that is measured subsequent to the heat and cool-down of the region being interrogated. A simple model is presented to provide a description of the method. In this paper, we could experimentally confirm that residual stress can be measured by using laser interferometry and spot heating method.

Confining Pressure-Dependency on Deformation and Strength Properties of Sands in Plane Strain Compression (평면 변형률 상태에서의 모래의 변형 강도특성의 구속압 의존성)

  • Park, Choon Sik;Tatsuoka, Fumio;Jang, Jeong Wook;Chung, Sung Gyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.543-552
    • /
    • 1994
  • A series of drained plane strain compression tests was performed on dried samples of dense Toyoura sand and Silver Leighton Buzzard sand prepared by air-pluviation method to find out the deformation and strength characteristics on the value of confining pressure ${\sigma}{_3}^{\prime}({\sigma}{_3}^{\prime}=0.05{\sim}4.0kgf/cm^2)$. The axial and lateral strains measured in this apparatus ranged from $10^{-6}$ up to the failure of the specimen. So the stress-strain characteristics would be investigated from very small to very large strain levels. It was found that the change of the angle of internal friction ${\phi}^{\prime}{_{max}}=arcsin\{({\sigma}{_1}^{\prime}-{\sigma}{_3}^{\prime})/({\sigma}{_1}^{\prime}+{\sigma}{_3}^{\prime})\}_{max}$ with the change of ${\sigma}{_3}^{\prime}$ is very small when ${\sigma}{_3}^{\prime}$ is lower than higher. Furthermore, the effect of confining pressure on stiffness of sands was evaluated. It was also found that for the range of shear strain ${\gamma}$ from $10^{-6}$ to those at peak, the Rowe's stress-dilatancy relation seems to be a good approximation for air-dried Toyoura sand and Silver Leighton Buzzard sand, irrespective of the change of ${\sigma}{_3}^{\prime}$.

  • PDF

Three Dimensional Deformation Behaviour of Compressible Sand (압축성(壓縮性) 모래의 3차원(次元) 변형거동(變形擧動))

  • Park, Byung Kee;Jeong, Jin Seob;Lim, Sung Chull
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.107-113
    • /
    • 1990
  • A series of cubical triaxial tests with independent control of the three principal stresses were performed on a compressible sand. All specimens which were formed by depositing the fine sand loosely, were used. It was found that slope of the stress-strain curve increased with increased b value, and the major principal strain at failure first remains approximetely constant for b values smaller than about 0.3 for drained condition and 0.6 for undrained condition respectively, and thereafter decreases with increasing value of b. The test results showed that the direction of the strain increments at failure form acute angles with the failure surfaces for both the drained and undrained condition. The results are thus not in agreement with the normality criterion from classic plasticity theory. However, it was found that the projections of the plastic strain increment vectors on the octahedral plane are perpendicular to the faiure surface in that plane.

  • PDF

Accurate Measurement of Residual Stresses of Glass Rods by Photoelasticity (광탄성법에 의한 유리봉 잔류응력의 정밀측정)

  • Baek, Tae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1524-1533
    • /
    • 1996
  • Risidual stress of cylindrical glass rods are measured by photoelasticity to study the variation of stresses with respect to heat treatment temperatures. In order to measure the stresses accurately, fringe sharpening and multiplication techniques are applied to the determination of photoelastic fringe orders. Filon's separationmethod is used to resolve circumferential and redial stress ocmponents from isochromatic fringes which are the same as in-plane maximum shearing stresses. According to the photoelastic measurements, residual stress is increased as the heat treatment temperature of the rods is raised from $560^{\circ}C$ to $650^{\circ}C$ All the circumferential stress components are changed from tensile stresses to compressive ones at approximate $R_m$/$R_o$ = 0.6, where $R_o$/ is outer radius and $R_m$any measured radius. This analysis shows that residual stresses of the glass rods approach zero if the rods are heat-treated near the strain point.

Residual Stress Analysis of the Overlay Weld on the Dissimilar Metal Butt Weld (이종재이종재료 Butt 용접에 대한 Overlay 용접의 잔류응력해석)

  • Kim, Kang-Soo;Lee, Ho-Jin;Lee, Bong-Sang;Jung, In-Chul;Byeon, Jin-Gwi;Park, Kwang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.534-537
    • /
    • 2008
  • In recent years, the dissimilar metal, Alloy 82/182 welds used to connect stainless steel piping and low alloy steel or carbon steel components in nuclear reactor piping system have experienced cracking due to primary water stress corrosion(PWSCC). It is well known that one reason of the cracking is the residual stress by the weld. But, it is difficult to estimate exactly weld residual stress due to many parameters of welding. In this paper, the analysis of 3 FEM models made by ABAQUS Code is performed to estimate exactly the weld residual stress on the dissimilar metal weld. 3 FEM models are Butt model, Repair model and Overlay model and are the plane.strain 2D model. The thermal analysis and the stress analysis are performed on each model and the residual stresses on each model were calculated and compared respectively. Also, the specimen of Butt model was made and the residual stresses were measured by X-Ray method and Hole Drilling Technique. These results were compared with the FEM result of Butt model.

  • PDF