• 제목/요약/키워드: plane stress/strain

검색결과 444건 처리시간 0.256초

CF8M 주조 스테인리스강의 2축 피로수명 예측을 위한 파라미터의 제안 (A Proposal of Parameter to Predict Biaxial Fatigue Life for CF8M Cast Stainless Steels)

  • 박중철;권재도
    • 대한기계학회논문집A
    • /
    • 제29권6호
    • /
    • pp.815-821
    • /
    • 2005
  • Biaxial low cycle fatigue test was carried out to predict fatigue life under combined axial-torsional-loading condition which is that of in-phase and out-of-phase for CF8M cast stainless steels. Fatemi-Socie(FS) parameter which is based on critical plane approach is not only one of methods but also the best method that can predict fatigue life under biaxial loading condition. But the result showed that, biaxial fatigue life prediction by using FS parameter with several different parameters for the CF8M cast stainless steels is not conservative but best results. So in this present research, we proposed new fatigue life prediction parameter considering effective shear stress instead of FS parameter which considers the maximum normal stress acting on maximum shear strain and its effectiveness was verified.

Influence of pressure-dependency of the yield criterion and temperature on residual stresses and strains in a thin disk

  • Alexandrov, S.;Jeng, Y.R.;Lyamina, E.
    • Structural Engineering and Mechanics
    • /
    • 제44권3호
    • /
    • pp.289-303
    • /
    • 2012
  • Existing plane stress solutions for thin plates and disks have shown several qualitative features which are difficult to handle with the use of commercial numerical codes (non-existence of solutions, singular solutions, rapid growth of the plastic zone with a loading parameter). In order to understand the effect of temperature and pressure-dependency of the yield criterion on some of such features as well as on the distribution of residual stresses and strains, a semi-analytic solution for a thin hollow disk fixed to a rigid container and subject to thermal loading and subsequent unloading is derived. The material model is elastic-perfectly/plastic. The Drucker-Prager pressure-dependent yield criterion and the equation of incompressibity for plastic strains are adopted. The distribution of residual stresses and strains is illustrated for a wide range of the parameter which controls pressure-dependency of the yield criterion.

Numerical analysis of embankment primary consolidation with porosity-dependent and strain-dependent coefficient of permeability

  • Balic, Anis;Hadzalic, Emina;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • 제11권2호
    • /
    • pp.93-106
    • /
    • 2022
  • The total embankment settlement consists of three stages: the initial settlement, the primary consolidation settlement, and the secondary consolidation settlement. The total embankment settlement is largely controlled by the primary consolidation settlement, which is usually computed with numerical models that implement Biot's theory of consolidation. The key parameter that affects the primary consolidation time is the coefficient of permeability. Due to the complex stress and strain states in the foundation soil under the embankment, to be able to predict the consolidation time more precisely, aside from porosity-dependency, the strain-dependency of the coefficient of permeability should be also taken into account in numerical analyses. In this paper, we propose a two-dimensional plane strain numerical model of embankment primary consolidation, which implements Biot's theory of consolidation with both porosity-dependent and strain-dependent coefficient of permeability. We perform several numerical simulations. First, we demonstrate the influence of the strain-dependent coefficient of permeability on the computed results. Next, we validate our numerical model by comparing computed results against in-situ measurements for two road embankments: one near the city of Saga, and the other near the city of Boston. Finally, we give our concluding remarks.

On the particularities of the forced vibration of the hydro-elastic system consisting of a moving elastic plate, compressible viscous fluid and rigid wall

  • Akbarov, Surkay D.;Panakhli, Panakh G.
    • Coupled systems mechanics
    • /
    • 제6권3호
    • /
    • pp.287-316
    • /
    • 2017
  • This paper studies the particularities of the forced vibration of the hydro-elastic system consisting of a moving elastic plate, compressible viscous fluid and rigid wall. This study is made by employing the discrete-analytical solution method proposed in the paper by the authors (Akbarov and Panakhli (2015)). It is assumed that in the initial state the fluid flow is caused by the axial movement of the plate and the additional lineally-located time-harmonic forces act on the plate and these forces cause additional flow field in the fluid and a stress-strain state in the plate. The stress-strain state in the plate is described by utilizing the exact equations and relations of the linear elastodynamics. However, the additional fluid flow field is described with linearized Navier-Stokes equations for a compressible viscous fluid. Numerical results related to the influence of the problem parameters on the frequency response of the normal stress acting on the plate fluid interface plane and fluid flow velocity on this plane are presented and discussed. In this discussion, attention is focused on the influence of the initial plate axial moving velocity on these responses. At the same, it is established that as a result of the plate moving a resonance type of phenomenon can take place under forced vibration of the system. Moreover, numerical results regarding the influence of the fluid compressibility on these responses are also presented and discussed.

유한요소해석을 이용한 다층 FCA 맞대기 용접부의 횡 방향 잔류응력 평가에 관한 연구 (A Study on the Evaluation of Transverse Residual Stress at the Multi-pass FCA Butt Weldment using FEA)

  • 신상범;이동주;박동환
    • Journal of Welding and Joining
    • /
    • 제28권4호
    • /
    • pp.26-32
    • /
    • 2010
  • The purpose of this study is to evaluate the residual stresses at the multi-pass FCA weldment using the finite element analysis (FEA). In order to do it, an H-type specimen was selected as a test specimen. The variable used was in-plane restraint intensity. The temperature distribution at the multi-pass FCA butt weldment was evaluated in accordance with the relevant guidance recommended by the KWJS. The effective conductivity for the weld metal corresponding to each welding pass was introduced to control the maximum temperature below the vaporization temperature of weld metal. The heat flux caused by welding arc was assumed to be applied to the weld metal corresponding to welding pass. With heat transfer analysis results, the distribution of transverse residual stresses was evaluated using the thermo-mechanical analysis and compared with the measured results by XRD and uniaxial strain gage. In thermo-mechanical analysis, the plastic strain resetting at the temperature above melting temperature of $1450^{\circ}C$ was considered and the weld metal and base metal was assumed to be bilinear kinematics hardening continuum. According to the comparison between FEA and experiment, transverse residual stresses at the multi-pass FCA butt weldment obtained by FEA had a good agreement with the measured results, regardless of in-plane rigidity. Based on the results, it was concluded that thermo-mechanical FE analysis based on temperature distribution calculated in accordance with the KWJS’s guidance could be used as a tool to predict the distribution of residual stress of the multi-pass FCA butt weldment.

잔류응력을 고려한 섬유 금속 적층판의 기계적 물성치 예측에 관한 이론적 연구 (Analytical Study for the Prediction of Mechanical Properties of a Fiber Metal Laminate Considering Residual Stress)

  • 강동식;이병언;박으뜸;김정;강범수;송우진
    • 소성∙가공
    • /
    • 제23권5호
    • /
    • pp.289-296
    • /
    • 2014
  • Uniaxial tensile tests were conducted to accurately evaluate the in-plane mechanical properties of fiber metal laminates (FMLs). The FMLs in the current study are comprised of a layer of self-reinforced polypropylene (SRPP) sandwiched between two layers of aluminum alloy 5052-H34. The nonlinear tensile behavior of the FMLs under in-plane loading conditions was investigated using both numerical simulations and a theoretical analysis. The numerical simulation was based on finite element modeling using the ABAQUS/Explicit code and the theoretical constitutive model was based on the volume fraction approach using the rule of mixture and a modification of the classical lamination theory, which incorporates the elastic-plastic behavior of the aluminum alloy and the SRPP. The simulations and the model are used to predict the inplane mechanical properties such as stress-strain response and deformation behavior of the FMLs. In addition, a post-stretching process is used to reduce the thermal residual stresses before uniaxial tensile testing of the FMLs. Through comparison of both the numerical simulations and the theoretical analysis with the experimental results, it is concluded that the numerical simulation model and the theoretical approach can describe with sufficient accuracy the actual tensile stress-strain behavior of the FMLs.

The efficiency of passive confinement in CFT columns

  • Johansson, Mathias
    • Steel and Composite Structures
    • /
    • 제2권5호
    • /
    • pp.379-396
    • /
    • 2002
  • The paper describes the mechanical behavior of short concrete-filled steel tube (CFT) columns with circular section. The efficiency of the steel tube in confining the concrete core depending on concrete strength and the steel tube thickness was examined. Fifteen columns were tested to failure under concentric axial loading. Furthermore, a mechanical model based on the interaction between the concrete core and the steel tube was developed. The model employs a volumetric strain history for the concrete, characterized by the level of applied confining stress. The situation of passive confinement is accounted for by an incremental procedure, which continuously updates the confining stress. The post-yield behavior of the columns is greatly influenced by the confinement level and is related to the efficiency of the steel tube in confining the concrete core. It is possible to classify the post-yield behavior into three categories: strain softening, perfectly plastic and strain hardening behavior. The softening behavior, which is due to a shear plane failure in the concrete core, was found for some of the CFT columns with high-strength concrete. Nevertheless, with a CFT column, it is possible to use high-strength concrete to obtain higher load resistance and still achieve a good ductile behavior.

터널굴착에 의한 변위계측값을 활용한 역해석 기법 연구 (Feedback Analysis for Tunnel Safety using displacements measured during the tunnel excavation)

  • 박시현;송원근;오영석;신용석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.199-204
    • /
    • 2007
  • This research aimed at to develop a quantitative assesment technique which uses the measured displacements at the excavated plane during tunnel construction. Tunnel structure has a feature with long extents comparing to the excavated section so that the tunnel safety assesment is more effective by using the measured data of displacements. Tunnel structures show different structural behaviors due to the mechanical characteristics of ground and supports themselves, excavation methods and construction methods of supports, etc. From this point of view, it has very important meanings on the practical aspects that the measured data from the construction cite represent the features of the interaction effects between ground and supports as they are. In this study, both the stress state and the properties of surrounding ground are analyzed by newly incorporated feedback analysis technique which can use the measured displacements directly. Then, the stress state and the properties of ground will be used to obtain the strain distribution of surrounding ground. Finally the tunnel safety can be assessed by comparing the estimated strain through the analysis to the allowable strain of ground quantitatively.

  • PDF

Analysis on Short Crack Growth Rate after Single Overload under Cyclic Bending Moment

  • Song, Sam-Hong;Lee, Kyeong-Ro;Kim, Amkee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권3호
    • /
    • pp.19-26
    • /
    • 2001
  • In order to investigate the effect of single tensile overload on the short crack growth behavior under the out-of-plane cyclic bending moment, crack opening stresses were continuously measured by an elastic compliance method using strain gages. The characteristics of short crack growth after the single tensile overload are analyzed by the effective stress range ratio. Futhermore, the investigation was carried out with respect to various fatigue crack growth behaviors such as the plastic zone size effect on crack retardation, the retarded crack length and the number of cycles.

  • PDF

변위 측정을 기본으로 한 구멍뚫기방법에 의한 잔류응력 측정 방법 (Determination of Residual Stress by the Hole Drilling Method Based on Displacement Measurement)

  • 신동일;주진원
    • 대한기계학회논문집A
    • /
    • 제29권11호
    • /
    • pp.1542-1550
    • /
    • 2005
  • This paper presents the numerical procedure for calculating non-uniform residual stresses based on relieved displacements obtained from incremental hole drilling. The relationship between the in-plane displacement produced by introducing a blind hole and the corresponding residual stress is established. Finite element calculations are described to evaluate the relieved coefficients required for the determination of non-uniform residual stresses. Validity of the proposed method has been tested through three axisymmetric test examples and two three-dimensional examples. As a result of . simulation on the test examples, it is found that this numerical procedure is well adopted to measuring non-uniform residual stress in the full hole depth range of the hole diameter from the surface. The accuracy of the hole drilling method with displacement measurement is discussed, comparing tile method with strain measurement