• Title/Summary/Keyword: plane shape

Search Result 983, Processing Time 0.033 seconds

Shape Optimization of Waveguide Tee Junction in H-plane (자기 평면 도파관 소자의 최적형상설)

  • 이홍배;한송엽;천창열
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.1020-1026
    • /
    • 1994
  • This paper presents a technique to optimize the shape of waveguide components in H-plane. The technique utilizes the numerical optimization process which employs the vector finite element method. In the optimization process, the sensitivity of an objective function with respect to design variables is computed by introducting adjoint variables, which makes the computation easy. The steepest descent method is then employed to update design variables. As a numerical example, an H-plane waveguide teejunction was considered to obtain optimized shape. Comparison between the initial and optimized shape was made.

A Study on Design Method of Developed Shape for Pressure Vessel Segment Heads (압력 용기 분할 경관의 초기 평판 형상 설계 기법 연구)

  • Kwon, I.K.;Park, Y.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.349-352
    • /
    • 2008
  • In this study, a design method of developed shape for double-curved pressure vessel segment heads was proposed in consideration of in-plane strain induced by forming works. In order to obtain the developed shape of double-curved plate, at first, the segments are subdivided into elements and then they are stacked into a series of strips producing the outline of the approximately developed shape. The developed shape was determined by imposing the in-plane displacement obtained from forming analysis and regression analysis on the outline of the approximately developed shape. The validation of the proposed design method was verified by applying it to the actual products.

  • PDF

REAL HYPERSURFACES IN COMPLEX TWO-PLANE GRASSMANNIANS WHOSE SHAPE OPERATOR IS OF CODAZZI TYPE IN GENERALIZED TANAKA-WEBSTER CONNECTION

  • Cho, Kyusuk;Lee, Hyunjin;Pak, Eunmi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.57-68
    • /
    • 2015
  • In this paper, we give a non-existence theorem of Hopf hypersurfaces in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$, $m{\geq}3$, whose shape operator is of Codazzi type in generalized Tanaka-Webster connection $\hat{\nabla}^{(k)}$.

Study on Structural Efficiency of Super-Tall Buildings

  • Jianlong, Zhou;Lianjin, Bao;Peng, Qian
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.185-190
    • /
    • 2014
  • Based on a 405m high super-tall building, the influence of outriggers, different shapes and layouts of structural plane and elevation on structural efficiency under lateral forces is studied in this paper. A calculation formula concerning the structural efficiency is given. The study shows that structural efficiency can be improved by triangulating the plane shape, using mega columns, the peripherization of the plane layout, tapering the elevation shape and setting bracing structure in the elevation. The arrangement of outriggers between the core tube and flange frame can reduce the shear lag effect in order to improve structural efficiency. The essence of improving structural efficiency of super-tall buildings is to maximize the plane bending stiffness and to make its deformation approach to plane section assumption.

Properties of Partial Discharge accompanying with Electrical Tree in LDPE (저밀도 폴리에틸렌에서 전기트리에 수반되는 부분방전의 특성)

  • 이광우;박영국;강성화;장동욱;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.234-238
    • /
    • 1999
  • The correlation between shape of electrical trees and partial discharge(PD) pulses in low density polyethylene(LDPE) were discussed. We observed growth feature of electrical tree by using optical microscope. On the basis of experimental results of measurements of trees occurring in the needle-plane arrangement with needle shape void and without needle shape void , statistical quantities are derived, which are relevant to PD pulse amplitude and phase. The PD quantities detected by partial discharge detector. we were analyzed q-n distribution pattern and $\psi$ -q-n distribution pattern. In this experiment, electrical trees in the needle-plane arrangement with needle shape void propagated branch type tree and in the needle-plane arrangement without needle shape void propagated bush type tree

  • PDF

Investigation and Analysis on the Surface Morphology of Roof-Top Photovoltaic System (평지붕 설치 태양광시스템의 표면형태 조사·분석)

  • Lee, Eung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.4
    • /
    • pp.57-65
    • /
    • 2016
  • Domestic photovoltaic system for roof-top is installed towards the south at an angle of 20 to 35 degrees and the shape of PV array is divided into two kinds; a plane shape and a curved shape. This paper aims to understand an actual condition of PV facility and strengths and weaknesses of support structure production and installation and to consider the best PV surface shape by analyzing theoretical logics of these two surface shapes and architectural perspective-based realistic case studies. This study targeted 98 facilities including common houses, public institutions and education institutions. In common houses, all of 59 PV facilities have a plane surface. In public institutions, 7 of 15 PV facilities have a curved array surface and 8 PV facilities have a plane surface. In education institutions, also, 14 of 24 PV facilities have a plane array surface and 10 PV facilities have a curved surface. Most of 98 facilities have a flat roof supporting shape. However, it was found that the curved shape wasn't positive for PV generation due to the change of radial density and it was at least 10 % more expensive to produce its structure. Also, domestic general large single-plate PV facilities have problems of harmony with buildings and wind load. Therefore, it is considered that for fixed-type roof-top PV, a plane PV array shape is good for optimum generation and economic efficiency and a parallel array structure on the roof surface is favorable to wind load and snow load without being a hindrance to the building facade.

Study on Vibration Characteristics in terms of Airfoil Cross-Sectional Shape by Using Co-rotational Plane Beam-Transient analysis (Co-rotational Plane beam-Transient analysis를 이용한 에어포일 단면 형상 변화에 따른 진동특성 연구)

  • Kim, Se-Ill;Kim, Yong-Se;Park, Chul-Woo;Shin, SangJoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.203-208
    • /
    • 2016
  • In this paper, vibration characteristics in terms of the airfoil cross-sectional shape was examined by using the EDISON co-rotational plane beam-transient analysis. Assuming aircraft wing as a cantilevered beam with a constant cross-sectional shape, natural frequencies of each airfoil shape was compared while varying airfoil maximum thickness and maximum camber length, using Fast Fourier Transformation(FFT). When the airfoil maximum thickness was varied, natural frequency showed peak value at 18% chord, and decreased afterwards. When the airfoil maximum camber length was varied, natural frequency either increased or decreased at 6% chord, while at 8% the natural frequency showed its maximum. Applying such trends to B-737 wing airfoil, an improved B-737_mod airfoil shape was obtained with regard to the vibration characteristics.

  • PDF

The Rolling Behavior of a Small Regular Polygonal Part on an Inclined Plane (경사면 위에서 작은 정다각형 부품의 구름 거동)

  • Han, In-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1461-1471
    • /
    • 2006
  • This paper presents the mathematical model for rolling behaviors of a small regular polygonal part on an inclined plane. Throughout the numerical analysis performed with the simulation program which has been experimentally validated, it is shown that the number of edges of the rolling polygonal part can be a measure for the energy dissipation rather than the coefficient of friction. The appropriate slope angle has been found to be around 20 degree for roughness-separation as well as shape-separation of polygonal parts which have small number of edges. In additions, the vibratory motion applied to the inclined plane is able to cause mixed parts to be separated more effectively according to the shape or the roughness. Finally, a couple of parts separation methods based on the analysis results are presented, and are validated through the numerical simulation.

Development on the Automated Process System for Cold Forging of Non-axisymmetric Parts (비축대칭 제품의 냉간단조 공정설계 시스템 개발)

  • 이봉규;조해용;권혁홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.527-530
    • /
    • 1997
  • An automated process planning system for cold forging of non-axisymmetric parts of comparatively simple shape was developed in this study. Programs for the system have been written with Visual LISP in the AutoCAD using a personal computer and are composed of four main modules such as input module, shape cognition and shape expression module, material diameter determination module and process planning module. The design rules and knowledges for th system are extracted from the plasticity theories. handbook, relevant reference and empirical knowledge of field experts. Generally, in forging, only front view is needed for expression of axisymmetric parts, but non-axisymmetric parts are needed both front view and plane. At the plane, this system cognizes the external shape of non-axisymmetric parts - number of sides of regular polygon and radius of a circle circumscribing the polygon of n sides. At the front view, the system perceives diameter of axisymmetric portions and hight of primitive geometries such as polygon, cylinder, cone, concave, convex, etc.

  • PDF

Static assessment of quadratic hybrid plane stress element using non-conforming displacement modes and modified shape functions

  • Chun, Kyoung-Sik;Kassegne, Samuel Kinde;Park, Won-Tae
    • Structural Engineering and Mechanics
    • /
    • v.29 no.6
    • /
    • pp.643-658
    • /
    • 2008
  • In this paper, we present a quadratic element model based on non-conforming displacement modes and modified shape functions. This new and refined 8-node hybrid stress plane element consists of two additional non-conforming modes that are added to the translational degree of freedom to improve the behavior of a membrane component. Further, the modification of the shape functions through quadratic polynomials in x-y coordinates enables retaining reasonable accuracy even when the element becomes considerably distorted. To establish its accuracy and efficiency, the element is compared with existing elements and - over a wide range of mesh distortions - it is demonstrated to be exceptionally accurate in predicting displacements and stresses.