• Title/Summary/Keyword: planar Yagi antenna

Search Result 16, Processing Time 0.024 seconds

Design of Broadband Planar Yagi Antenna (광대역 평면야기안테나설계)

  • Lee, Jong-Ig;Yeo, Jun-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.662-664
    • /
    • 2010
  • In this paper, it is studied that the design method for the planar quasi-Yagi antenna suitable for the operation over 5-10GHz band. Yagi antenna is fed by a short-ended microstrip line and matched by a Balun circuit embedded within the antenna. The results for the characteristics of the Yagi antenna fabricated on the FR4 substrate (${\epsilon}_r$= 4.4, h=0.8mm) agreed well with those predicted by computer simulations.

  • PDF

A Planar Yagi-Uda Dipole Antenna with Dual Tapered Balun by CPW-fed to CPS (CPW-fed to CPS 전이 급전에 의한 이중 테이퍼드 발룬을 포함한 평판형 Yagi-Uda 다이폴 안테나 설계)

  • Lee, Hyeonjin;Kim, Tea-Hong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.207-211
    • /
    • 2015
  • In this paper, we proposed a broadband planar Yagi-Uda dipole antenna with dual tapered balance and unblance (balun) by CPW-fed to CPS. This antenna consisted of driver, three directors, dual tapered balun and CPS-fed to CPS. The fed structure of CPW-fed to CPS had a benefit points much simpler than other planar Yagi-Uda antennas and provided design more flexibility in arranging the reflector. The proposed antenna is introduced dual tapered balun to improve the impedance matching. It balun is inserted between the CPW-ground and the CPS. The proposed antenna is exhibited the bandwidth of 4.78 GHz (1.94~6.72 GHz) (S11 < -10 dB) and the gain of 4.9~7.2 dBi within that bandwidth. This antenna will applicate wireless communication.

Planar Directional Beam Antenna Design for Beam Switching System Applications

  • Lee, Seok-Jae;Yoon, Won-Sang;Han, Sang-Min
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.1
    • /
    • pp.14-19
    • /
    • 2017
  • In this paper, a planar directional beam-switchable antenna with four orthogonal beam directions is proposed. The proposed antenna is designed with two crossed active elements and two parasitic elements for each direction. The design methodology is described on the basis of the Yagi-Uda method for the active and parasitic elements, respectively. By adjusting the effective electric lengths of the parasitic elements, the roles of a director and a reflector are exchanged with each other. The planar four-way beam-switchable Yagi-Uda antenna is implemented. From the experimental results. The proposed design method is verified for orthogonal radiation beam switching.

Study on a Novel Feeding Method for Broadband Yagi Antenna for DTV (DTV용 광대역 야기 안테나 새로운 급전방법 연구)

  • Lee, Jong-Ig;Park, Jin-Taek;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.475-476
    • /
    • 2015
  • In this paper, we introduce a novel feeding method for a broadband planar quasi-Yagi antenna (QYA) for terrestrial digital television (DTV) receiving. The balun between the balanced coplanar strip (CPS) line feeding the driver dipole and the unblanaced microstrip line is a rectangular patch inserted into the CPS line along the center of the CPS. The end of the balun is connected to the CPS line through a shorting pin. The effects of various geometrical parameters and balun on the antenna characteristics are examined. An antenna, as an design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV.

  • PDF

Design of Compact Planar Quasi-Yagi Antenna for DTV Reception (디지털방송 수신용 평면 준-야기 안테나의 소형화 설계)

  • Lee, Jong-Ig;Han, Dae-Hee;Kim, Soo-Min;Kim, Gun-Kyun;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.583-585
    • /
    • 2012
  • In this paper, we introduce a design method for a broadband planar quasi-Yagi antenna (QYA) for terrestrial digital television (DTV) receiving. The coplanar strip line feeding the driver dipole is connected to a microstrip line and is terminated by short circuit. By appending a wide strip-type director at a location close to the driver dipole, a broadband impedance matching and a gain characteristics in a high frequency region are obtained. The gain characteristics in a low frequency region are improved by adding a reflector formed by a truncated ground plane. To reduce the antenna size, the strip-type dipole and reflector are modified to half bowtie (V)-shaped elements. The effects of various parameters on the antenna characteristics are examined. An antenna, as an design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV. The optimized antenna is fabricated on an FR4 substrate and tested experimentally to verify the results of this study.

  • PDF

Design of a Ku-Band Quasi-Yagi Antenna Array Using an Ultra-Wideband Balun (초광대역 발룬을 이용한 Ku 대역 Quasi-Yagi 배열 안테나 설계)

  • Woo, Dong-Sik;Kim, Young-Gon;Cho, Young-Ki;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.207-213
    • /
    • 2008
  • A simplified design procedure for quasi-Yagi antenna arrays using an ultra-wideband balun is presented. The proposed antenna design procedure is based on the simple impedance matching among antenna components: i.e., balun, feed, and antenna This new broadband and high gain antenna array is possible due to the ultra-wideband performance of the balun. As design examples, wideband $1\times4$ and $1\times8$ quasi-Yagi antenna arrays are successfully designed and implemented in Ku-band with frequency bandwidths of about 50 % and antenna gains of 9$\sim$10 dBi and 11$\sim$12 dBi, respectively. And the simulated and measured results demonstrate wide bandwidths and good radiation properties. These antenna arrays can be applied to various phased-array and spatial power combining systems.

Design of a Broadband Quasi-Yagi Antenna fed by a Microstrip with a Shorted End (단락종단된 마이크로스트립으로 급전되는 광대역 quasi-Yagi 안테나 설계)

  • Lee, Jong-Ig;Yeo, Jun-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.70-73
    • /
    • 2012
  • In this paper, we introduce a design method for a quasi-Yagi antenna (QYA) with broadband characteristics of an impedance bandwidth ratio of > 2 : 1 and a gain of > 4 dBi. The QYA is fed by a microstrip line fabricated on a coplanar strip line and it consists of 3 elements; a planar dipole, a nearby director close to the dipole, and a ground plane reflector. By placing a rectangular patch-type director with large width near to the dipole driver, broadband characteristics are achieved. An optimized 3-element QYA for operation over 1.6-3.5 GHz (bandwidth ratio 2.2 : 1) is fabricated on an FR4 substrate with a size of $90mm{\times}90mm$ and tested experimentally. The results show an impedance bandwidth of 1.56-3.74 GHz (bandwidth ratio 2.4 : 1) for VSWR < 2, a peak gain of 4.41-6.53 dBi, and a front-to-back ratio (FBR) > 13.6 dB within the bandwidth.

  • PDF

Design of a Broadband Quasi-Yagi Antenna with a 2:1 Impedance Bandwidth Ratio (2:1 임피던스 대역폭 비를 가지는 광대역 quasi-Yagi 안테나 설계)

  • Lee, Jong-Ig;Yeo, Jun-Ho;Park, Jin-Taek
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.5
    • /
    • pp.760-765
    • /
    • 2012
  • In this paper, we studied a design method for a quasi-Yagi antenna (QYA) with broadband characteristics of an impedance bandwidth ratio greater than 2 : 1 and a gain > 4 dBi. The QYA is fed by a microstrip line fabricated on a coplanar strip line and it consists of 3 elements; a planar dipole, a nearby director close to the dipole, and a ground plane reflector. By placing a wide rectangular patch-type director near to the dipole driver, broadband characteristics are achieved. An optimized 3-element QYA for operation over 1.6-3.5 GHz (bandwidth ratio 2.2 : 1) is fabricated on an FR4 substrate with a size of 90 mm by 90 mm and tested experimentally. The results show an impedance bandwidth of 1.56-3.74 GHz (bandwidth ratio 2.4 : 1) for VSWR < 2, a peak gain of 4.2-6.3 dBi, and a front-to-back ratio (FBR) > 13.6 dB within the bandwidth.

Diversity and Directivity Mode-Switchable Planar Antenna Array (접고 펼침에 따라 다이버시티와 지향성 모드로 변환이 가능한 평면형 안테나 어레이)

  • Choe, Hyeonhyeong;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.233-238
    • /
    • 2013
  • In this paper, a novel diversity and directivity mode-switchable planar antenna array is proposed. For the diversity mode, four elements are unfolded on the plane and high isolation can be achieved. On the other hand, the antenna function is changed to the directivity mode when they are folded and stacked. Each element works such as a stacked Yagi-Uda antenna with high directivity. Especially, the curved feed line as well as the hybrid feeding method is used to improve performances. The simulation results agree well with measurement results and it is successfully demonstrated that two modes are properly working at 2.4 GHz.

Design of a Broadband Quasi-Yagi Antenna for UHF Band (UHF 대역 광대역 준-야기 안테나 설계)

  • Yang, Myung-Gyu;Lee, Yun-Joo;Kwon, Jun-Hyoek;Lee, Chang-Kyun;Lee, Jong-Ig;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.939-940
    • /
    • 2015
  • In this paper, a design method for a quasi-Yagi antenna (QYA) suitable for UHF band is studied. Due to the mutual coupling between a coplanar strip (CPS)-fed planar dipole and a conducting strip director placed close to the dipole, the dipole obtains broadband characteristics. A ground reflector improves gain in the lower frequency band, and the antenna size might be reduced by employing a bent reflector. The balun between the CPS line and the microstrip(MS) line is constructed by connecting the end of MS line and the CPS line through a shorting pin. In addition, a ring-type conductor connects the CPS line and reflector. The effects of various geometrical parameters and balun on the antenna characteristics are examined. An antenna, as an design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV.

  • PDF