• Title/Summary/Keyword: plain water

Search Result 448, Processing Time 0.023 seconds

A Study on Finned Tube Used in Turbo Refrigerator(III) -for Pressure Drop- (터보 냉동기용 핀 튜브에 관한 연구 (III) -압력 손실에 관하여-)

  • Han, Kyu-Il;Kim, Si-Young;Cho, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.6 no.1
    • /
    • pp.58-76
    • /
    • 1994
  • Heat transfer and pressure drop measurements are made on low integral-fin tubes in turbulent water flow condition. The integral-fin tubes investigated in this paper are nominally 19mm in diameter. Eight tubes have been used with trapezoidally shaped integral-fins having fin density from 748 to 1654 fpm and 10, 30 grooves. Plain tube having same diameter as finned tube is also tested for comparison. Experiments are carried out using R-11 as working fluid. The refrigerant condensates at a saturation state of $30^{\circ}C$ on the outside tube surface cooled by coolant. The amount of noncondensable gases present in the test loop is reduced to a negligible value by repeated purging. For a given heat input to the boiler and given cooling water flow rate, all test data are taken on steady state. The heat transfer loop is used for testing single long tubes and cooling water is pumped from a storage tank through filters and flowmeters to the horizontal test section where it is heated by steam condensing on the outside of the tube. The pressure drop across the test section is measured by means of pressure gauge and manometer. Each tube tested is cleaned with sodium dichromate pickling solution and well rinsed with water prior to installation in the test section. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, heat transfer of finned tube is enhanced up to 4 times as that of a plain tube at constant Reynolds number and up to 2 times at constant pumping power. 2. Friction factors are up to 1.6~2.1 times those of plain tube. 3. At a given Reynolds number, Nusselt number decrease with increasing pitch to diameter. 4. The constant pumping power ratio for low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio.

  • PDF

Mock-up Test on the Reduction of Drying Shrinkage Crack in Structural Concrete (구조체 콘크리트의 건조수축 균열저감에 관한 Mock-up 실험)

  • Yoon Seob;Song Seung Heon;Han Min Cheol;Kim Kyeong Hwan;Jong Young Hee;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.393-396
    • /
    • 2005
  • This paper presents the results of drying shrinkage of concrete using shrinkage-reducingadmixture(DSRA) studied by the authors through mock-up test. DSRA is proportioned by expansive admixture and shrinkage reducing agent(SRA). Flowing concrete method is also applied to assist the concrete to reduce drying shrinkage by decreasing water content at the same time. The use of EA and SRA does not affect fluidity, bleeding and setting time. Compressive strength of concrete using EA along with SRA exhibited less than that of plain concrete. However, The compressive strength with combination of EA-SRA along with flowing concrete method shows comparable to that of plain concrete. The application of developed method can contribute to reducing drying shrinkage by as much as 30-40$\%$ compared with that of plain concrete.

  • PDF

Experimental study on improving bamboo concrete bond strength

  • Mali, Pankaj R.;Datta, Debarati
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.191-201
    • /
    • 2019
  • Bamboo concrete bond behaviour is investigated through pullout test in this work. The bamboo strip to be used as reinforcement inside concrete is first treated with chemical adhesive to make the bamboo surface impermeable. Various surface coatings are explored to understand their water repellant properties. The chemical action at the bamboo concrete interface is studied through different chemical coatings, sand blasting, and steel wire wrapping treatment. Whereas mechanical action at the bamboo concrete interface is studied by developing mechanical interlock. The result of pullout tests revealed a unique combination of surface treatment and grooved bamboo profile. This combination of surface treatment and a grooved bamboo profile together enhances the strength of bond. Performance of a newly developed grooved bamboo strip is verified against equivalent plain rectangular bamboo strip. The test results show that the proposed grooved bamboo reinforcement, when treated, shows highest bond strength compared to treated plain, untreated plain and untreated grooved bamboo reinforcement. Also, it is observed that bond strength is majorly influenced by the type of surface treatment, size and spacing of groove. The changes in bamboo-concrete bond behavior are observed during the experimentation.

Evaluation of water absorption and thermal insulation properties of flooring board (플로어링보드의 흡수성 및 단열성 평가)

  • Park, Cheul-Woo;Lim, Nam-Gi;Lee, Dong-Gun;Jo, Young-Bin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.178-179
    • /
    • 2021
  • Comparing the absorption volume of test pieces immersed over time in room temperature moisture with weight, WF absorbed about 40% more than PLAIN, and PLAIN stopped absorbing after 10 minutes, but WF continued to absorb. It is thought that the woven fabric layer of the core material continued to absorb moisture. In the heat transfer test, the test piece to which only WF was applied had a temperature difference of about 2℃ compared to PLAIN, and when the insulating liquid was sprayed, there was a difference in heat transfer properties of up to 5℃. This is judged to have low heat transfer properties of the basic woven fabric, but the heat insulating liquid also further reduces heat transfer properties.

  • PDF

Energy and Mass Balance of Snowpack - Rapid snowmelt during Fohn events in the Takada plain -

  • ;Shinichi Takami
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.88-94
    • /
    • 1990
  • Several models physically based to predict the evolution of the snowpack have been proposed. Validity of these models for hourly estimation is, however, questionable, since they have been tested only on a daily basis. A computational model to predict the amount of snowpack on an hourly basis in terms of snowload from a set of meterological measurements was developed and investigated the rapid snowmelt conditions during Fohn events in the Takada plain.

  • PDF

The Properties of Concrete(BlueCon) using Fluosilicate Salt Based Admixtures and Estimation of Field Application (규불화염계 혼화제를 사용한 콘크리트의 특성 및 현장적용성 평가)

  • Choi Se Jin;Cho Jae Hyung;Kim Do Su;Oh Joo Yeol;Lee Seong Yong;Lee Seong Yeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.359-362
    • /
    • 2005
  • This study was performed to know the properties and estimation of field application of concrete(Bluecon) using fluosilicate salt based admixture made from by-product during phosphoric acid manufacturing process. Mix proportions for experiment were modulated at 0.45 of water-binder ratio and $0.5-2.0\%$ of adding ratio of fluosilicate salt based inorganic compound. Evaluation for Field application of concrete was carried out batch plant test at remicon factory and building construction. According to results. it was found that slump of concrete(Bluecon) using fluosilicate salt based admixture is higher about 10 to 20 mm than plain concrete, and air content is similar to each other. And the water permeability and crack of bluecon is lower than that of plain concrete.

  • PDF

Drying Shrinkage Cracking of Concrete used Very Fine Sand (미립 잔골재를 혼입한 콘크리트의 건조수축 균열 특성)

  • Lee, Eui-Bae;Park, Sang-Jun;Kim, Kyoung-Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.90-91
    • /
    • 2014
  • In this study, the effect of very fine sand on drying shrinkage cracking of concrete was experimentally evaluated. As a result of the study, the time-to-cracking of concrete used very fine sand was shorter than plain concrete. Also, the stress rate of concrete used very fine sand was higher than plain concrete. It was due to the increase of water content when very fine sand was used in concrete. In conclusion, the use of very fine sand can lead the increase of water content to meet the target slump and higher potential of cracking of concrete.

  • PDF

Thin Film Evaporation on Horizontal Plain Tubes (수평 평활관 외측의 액막 증발에 관한 연구)

  • Kim, J.O.;Kim, N.H.;Choi, K.K.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.49-57
    • /
    • 1998
  • In this study, thin film evaporation of water on a horizontal plain tube is experimentally investigated. At a high heat flux, boiling of water is noticed inside the film. Once boiling occurs, evaporation heat transfer coefficient increases as the heat flux increases. In the non-boiling region, however, the heat transfer coefficient remains uniform irrespective of the heat flux. In this region, the heat transfer coefficient increases as the film flow rate increases. Comparison with existing correlations is also provided.

  • PDF

An Experimental Study on the Properties of the High Strength Crushed Sand Concrete Using Blast-Furnace Slag (고로슬래그를 사용한 고강도 부순모래 경화콘크리트의 물성에 관한 실험적 연구)

  • Choi, Young-Wha;Kim, Jong-In
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.3
    • /
    • pp.169-176
    • /
    • 2005
  • The purpose of this study is to develop the high strength crushed sand concrete in conditions of water binder ratios of 25, 30, 35% and blast-furnace slag substitutions of 0, 15, 30, 45%. Additionally, in case of water binder ratio of 30%, the maximum size of coarse aggregate is two kinds of 13, 19 mm. The conclusions of this study are as follows ; 1. The compressive strength appeared lower in early age as compared with that of plain concrete according to increasing of the blast-furnace slag substitution. But, the compressive strength was respectively 5, 6, 10% larger than that of plain concrete in case of 25, 30, 35% water binder ratios, 28 days, 30% blast-furnace slag substitution and 19mm coarse aggregate. 2. According to increasing of the blast-furnace slag substitution, the modulus of elasticity and the tensile strength of concrete increased. 3. The length change by the shrinkage increased when the larger coarse aggregate was used, and decreased according to higher blast-furnace slag substitution.

  • PDF

Study on Characteristics for Local Deposit of Sediment by Surveying River Bed's Layer History in High Berm of River Channel (하도 층구조 이력조사를 통한 하도내 국지퇴적 특성 분석)

  • Ryu, Young-Hoon;Lee, Sam-Hee;Ahn, Won-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.10
    • /
    • pp.883-891
    • /
    • 2010
  • More recently, there have been significant changes in the forms of channels due to runoff characteristics driven by climate changes and other alterations in basin/channel environments. Particularly, increasing local deposition in major channels is being observed nationwide. Of such phenomena, it is noteworthy that flood-plains show unidirectional growth and lowering of channels within compound channels in the form of a high-flow plain. These changes are supposed to affect management of the river ecology as well as flood control. In this study, the research on channels in Korea confirmed that the phenomenon of local deposition in those channels is actually taking place, rendering a problem to be urgently addressed. Previous studies on bed changes have been focused on low channels based on bed materials distributed over the channels. However, this research has proved that surface-layer deposition of a high-flow plain is closely related with changes in the conditions of ground surfaces and, ultimately, affects the bed of the entire channel as well. According to the intensive research on the condition of the high-flow plain of the mouth of the Han River, the silt deposited in the high-flow plain was the main cause of settlement/growth of vegetation. And this leads to landforming along with woods-forming, disturbing flood control as well as the normal river ecology.