• Title/Summary/Keyword: pituitary hormone

Search Result 262, Processing Time 0.025 seconds

Study of Growth Disturbance and Endocrine, in the view of Oriental Medicine (소아 성장장애와 내분비에 대한 한의학적 고찰)

  • Jun Chan-Il
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.15 no.1
    • /
    • pp.105-115
    • /
    • 2001
  • The relation of endocrine in the western medicine and zangfu-organ functions in Korean medicine, related to growth disturbance, was studied and derived the following results. 1. The hormone most related to growth disturbance is, directly secreted from the anterior pituitary or is stimulated and secreted in the target grands, growth hormone, thyroid, adrenocortical hormone, gonadial hormone and is insulin secreted from $\beta$ cell of langerhans' slands of pancreas. 2. the pituitary has the most close relation with the kidney in the five zang-organ. Because the kidney is innate origin(先天之本) and promotes qi and blood(生化氣血), stores the essence of life(藏精), dominates the bones(主骨) and promotes the marrow(生骨髓). Especially it is connected with brain(通於腦). 3. In the children growth, the endocrine action in the pituitary has the most close relation with the kidney, As in the reports of the brain and spinal cord, bone, store essence of life, sexual maturation and decline(kidney-qi, sexual functions of both sexes(天癸)) etc, and cause of cretinism, dwarf in the main subject. 4. Somatomedin is the most important factor of the growth factors, IGF in another word. The unification of IGF and secretion is controlled firstly according to growth hormone, however is very closely related to the nutrition status in the non-hormonic causes. Also, it is affected very much by the insulin. 5. Insulin is one of the important hormone related to the growth and is secreted from the pancreas. Pancreas belongs to the functional system of spleen in oriental medicine, thus the growth disturbance, occurred due to error in insulin secretion and nutrition(in another words, the lack of postnatal essential substance from food-stuff(水穀精氣)), is closely related to the spleen. 6. From the results driven above, the hormone action of endocrine and problem in secretion, related to the growth disturbance, must be focused on the differentiation of symptoms and signs of the kidney and the spleen in oriental medicine.

  • PDF

Long-term outcomes of surgery and radiotherapy for secreting and non-secreting pituitary adenoma

  • Kim, Mi Young;Kim, Jin Hee;Oh, Young Kee;Kim, El
    • Radiation Oncology Journal
    • /
    • v.34 no.2
    • /
    • pp.121-127
    • /
    • 2016
  • Purpose: To investigate treatment outcome and long term complication after surgery and radiotherapy (RT) for pituitary adenoma. Materials and Methods: From 1990 to 2009, 73 patients with surgery and RT for pituitary adenoma were analyzed in this study. Median age was 51 years (range, 25 to 71 years). Median tumor size was 3 cm (range, 1 to 5 cm) with suprasellar (n = 21), cavernous sinus extension (n = 14) or both (n = 5). Hormone secreting tumor was diagnosed in 29 patients; 16 patients with prolactin, 12 patients with growth hormone, and 1 patient with adrenocorticotrophic hormone. Impairment of visual acuity or visual field was presented in 33 patients at first diagnosis. Most patients (n = 64) received RT as postoperative adjuvant setting. Median RT dose was 45 Gy (range, 45 to 59.4 Gy). Results: Median follow-up duration was 8 years (range, 3 to 22 years). In secreting tumors, hormone normalization rate was 55% (16 of 29 patients). For 25 patients with evaluable visual field and visual acuity test, 21 patients (84%) showed improvement of visual disturbance after treatment. The 10-year tumor control rate for non-secreting and secreting adenoma was 100% and 58%, respectively (p < 0.001). Progression free survival rate at 10 years was 98%. Only 1 patient experienced endocrinological recurrence. Following surgery, 60% (n = 44) suffered from pituitary function deficit. Late complication associated with RT was only 1 patient, who developed cataract. Conclusion: Surgery and RT are very effective and safe in hormonal and tumor growth control for secreting and non-secreting pituitary adenoma.

Effects of Chromium Picolinate Supplementation on Growth Hormone Secretion and Pituitary mRNA Expression in Finishing Pigs

  • Wang, M.Q.;He, Y.D.;Xu, Z.R.;Li, W.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.7
    • /
    • pp.1033-1037
    • /
    • 2008
  • The purpose of the present study was to investigate the effects of chromium picolinate (CrPic) on growth hormone (GH) secretion and pituitary GH mRNA expression in finishing pigs. Forty eight crossbred pigs with an initial body weight of 65.57 kg (SD = 1.05) were blocked by body weight and randomly assigned to two treatments with three replicates. Each group was fed the diet supplemented with or without $200{\mu}g/kg$ chromium from CrPic for 40 days. The results showed that average daily gain of pigs was increased by 9.84% (p<0.05), and longissimus muscle area was increased by 17.29% (p<0.05) with the supplementation of CrPic. The results of GH dynamic secretion showed that supplemental CrPic increased the mean level and peak value of GH by 36.58% (p<0.05) and 26.60% (p<0.05), respectively, while there was no significant effect on basal value, peak amplitude and peak duration. Pituitary mRNA expression of GH was not significantly influenced by supplemental CrPic. These results indicated that CrPic increased pigs GH secretion without change of pituitary GH mRNA expression.

Endocrine Outcome of Endoscopic Endonasal Transsphenoidal Surgery in Functioning Pituitary Adenomas

  • Choe, Jai-Ho;Lee, Kun-Soo;Jeun, Sin-Soo;Cho, Jin-Hee;Hong, Yong-Kil
    • Journal of Korean Neurosurgical Society
    • /
    • v.44 no.3
    • /
    • pp.151-155
    • /
    • 2008
  • Objective : Microscopic and endoscopic transsphenoidal approach (TSA) are major surgical techniques in the treatment of pituitary adenoma. Endoscopic endonasal transsphenoidal approach (EETSA) has been increasingly used for pituitary adenomas, however, its surgical outcome particularly in functioning pituitary adenoma has been debated. Here, we investigated the endocrine outcome of the patients with growth hormone (GH) and adrenocorticotropic hormone (ACTH) secreting pituitary adenoma treated by EETSA. Methods : We treated 80 patients with pituitary adenoma by EETSA since 2004, of which 12 patients were affected by functioning pituitary adenomas (9 GH, 3 ACTH, 0 PRL; 9 macro, 3 micro). Surgical outcome of those patients treated by EETSA was compared with that of the 11 functioning pituitary adenoma patients (8 GH, 3 ACTH; 8 macro, 3 micro) who underwent sublabial microscopic TSA between 1997 and 2003. Results : Imaging remission based on postoperative MRI was achieved in 8 (73%) and hormonal remission in 5 (45%) of 11 patients treated by sublabial microscopic TSA. Imaging remission was observed in 10 (83%, p=0.640) and hormonal remission in 10 (83%, p=0.081) of 12 patients by EETSA. CSF leakage was noticed in 2 (17%) of EETSA group and in 2 (18%) of sublabial microscopic TSA group. Panhypopituitarism was observed in 1 (9%) of EETSA group and in 3 (27%) of sublabial microscopic TSA group. Conclusion : EETSA appears to be an effective and safe method for the treatment of functioning pituitary adenomas.

Effects of Gonadotropin-Releasing Hormone on in vitro Gonadotropin Release in Testosterone-Treated Immature Rainbow Trout

  • Kim, Dae-Jung;Kim, Yi-Cheong;Aida, Katsumi
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.429-437
    • /
    • 2009
  • The control mechanism of gonadotropin-releasing hormone (GnRH) on gonadotropin (GTH) release was studied using cultured pituitary cell or cultured whole pituitary obtained from Testosterone (T) treated and control immature rainbow trout. The release of FSH was not changed by salmon type GnRH (sGnRH), chiken-II type (cGnRH-II), GnRH analogue ([des-$Gly^{10}D-Ala^6$] GnRH ethylamide) and GnRH antagonist ([Ac-3, 4-dehydro-$Pro^1$, D-p-F-$Phe^2$, D-$Trp^{3,6}$] GnRH) in cultured pituitary cells of T-treated and control fish. Indeed, FSH release was not also altered by sGnRH in cultured whole pituitary. All tested drugs had no effect on the release of LH in both culture systems of control fish. The levels of LH, in contrast, such as the pituitary content, basal release and responsiveness to GnRH were increased by T administration in both culture systems. In addition, the release of LH in response to sGnRH or cGnRH-II induced in a dose-dependent manner from cultured pituitary cells of T-treated fish, but which is not significantly different between in both GnRH at the concentration examined. Indeed, LH release was also increased by sGnRH in cultured whole pituitary of T-treated fish. GnRH antagonist suppressed the release of LH by sGnRH ($10^{-8}\;M$) and GnRH analogue ($10^{-8}\;M$) stimulation in a dose-dependent manner from cultured pituitary cells of T-treated fish, and which were totally inhibited by $10^{-7}\;M$ GnRH antagonist. These results indicate that the sensitivity of pituitary cells to GnRH is elevated probably through the T treatment, and that GnRH is involved in the regulation of LH release. GnRH-stimulated LH release is inhibited by GnRH antagonist in a dose-dependent manner. The effects of gonadal steroids on FSH levels are less clear.

Carboxypeptidase E, Identified As a Direct Interactor of Growth Hormone, Is Important for Efficient Secretion of the Hormone

  • Mizutani, Akiko;Inoko, Hidetoshi;Tanaka, Masafumi
    • Molecules and Cells
    • /
    • v.39 no.10
    • /
    • pp.756-761
    • /
    • 2016
  • We have identified 88 interactor candidates for human growth hormone (GH) by the yeast two-hybrid assay. Among those, we focused our efforts on carboxypeptidase E (CPE), which has been thought to play a key role in sorting prohormones, such as pro-opiomelanocortin (POMC), to regulated secretory vesicles. We found that CPE colocalizes with and interacts with GH in AtT20 pituitary cells. Downregulation of CPE led to decreased levels of GH secretion, consistent with involvement of CPE in GH sorting/secretion. Our binding assay in vitro with bacterially expressed proteins suggested that GH directly interacts with CPE but in a manner different from POMC.

The Control Mechanism of Gonadotropin-Releasing Hormone and Dopamine on Gonadotropin Release from Cultured Pituitary Cells of Rainbow Trout Oncorhynchus mykiss at Different Reproductive Stages

  • Kim, Dae-Jung;Suzuki, Yuzuru;Aida, Katsumi
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.379-388
    • /
    • 2011
  • The mechanism by which gonadotropin-releasing hormone (GnRH) and dopamine (DA) control gonadotropin (GTH) release was studied in male and female rainbow trout using cultured pituitary cells obtained at different reproductive stages. The mechanisms of follicle-stimulating hormone (FSH) release by GnRH and DA could not be determined yet. However, basal and salmon-type GnRH (sGnRH)- or chicken-II-type GnRH (cGnRH-II)- induced luteinizing hormone (LH) release increased with gonadal maturation in both sexes. LH release activity was higher after sGnRH stimulation than cGnRH-II stimulation at maturing stages in both sexes. The GnRH antagonist ([Ac-3, 4-dehydro-$Pro^1$, D-p-F-$Phe^2$, D-$Trp^{3,6}$] GnRH) suppressed LH release by sGnRH stimulation in a dose-dependent manner, although the effect was weak in maturing fish. The role of DA as a GTH-release inhibitory factor differs during the reproductive cycle: the inhibition of sGnRH-stimulated LH release by DA was stronger in immature fish than in maturing, ovulating, or spermiated fish. DA did not completely inhibit sGnRH-stimulated LH release, and DA alone did not alter basal LH release. Relatively high doses ($10^{-6}$ or $10^{-5}M$) of domperidone (DOM, a DA D2 antagonist) increased LH release, which did not change with reproductive stage in either sex. The potency of DOM to enhance sGnRH-stimulated LH release was higher in maturing and ovulated fish than in immature fish. These data suggest that LH release from the pituitary gland is controlled by dual neuroendocrine mechanisms by GnRH and DA in rainbow trout, as has been reported in other teleosts. The mechanism of control of FSH release, however, remains unknown.