• Title/Summary/Keyword: pitch space

Search Result 284, Processing Time 0.026 seconds

The Lombard effect on the speech of children with intellectual disability (지적장애 아동의 롬바드 효과에 따른 말산출 특성)

  • Lee, Hyunju;Lee, Jiyun;Kim, Yukyung
    • Phonetics and Speech Sciences
    • /
    • v.8 no.4
    • /
    • pp.115-122
    • /
    • 2016
  • This study investigates the acoustic-phonetic features and speech intelligibility of Lombard speech in children with intellectual disability, by examining the effect of Lombard speech at 3 levels of non-noise, 55dB, and 65dB. Eight children with intellectual disability read sentences and played speaking games, and their speech were analyzed in terms of intensity, pitch, vowel space of /a/, /i/, and /u/, VAI(3), articulation rate and speech intelligibility. Results showed, first, that intensity and pitch increased as noise level increased; second, that VAI(3) increased as the noise level increased; third, that articulation rate decreased as noise intensity increased; finally, that speech intelligibility increased as noise intensity increased. The Lombard speech changed the VAI(3), vowel space, articulation rate, speech intelligibility of the children with intellectual disability as well. This study suggests that the Lombard speech will be clinically useful for the persons who have intellectual disability and difficulties in self-control.

Si Deep Etching Process Study for Fine Pitch Probe Unit

  • Han, Myeong-Su;Park, Il-Mong;Han, Seok-Man;Go, Hang-Ju;Kim, Hyo-Jin;Sin, Jae-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.296-296
    • /
    • 2012
  • LCD panel 검사를 위한 Probe unit은 대형 TV 및 모바일용 스마트폰을 중심으로 각광을 받고 있는 소모성 부품으로 최근 pitch의 미세패턴화가 급속히 진행되고 있다. 본 연구에서는 Slit Wafer 제작 공정을 최적화하기 위해 25 um pitch의 마스크를 설계, 제작하였다. 단공과 장공을 staggered 형태로 배열하여 25 um/25 um line/space pitch로 설계하였다. 또한 단위실험을 위해 직접 25 um pitch로 설계하여, 동일한 실험조건을 적용하여 최적 조건을 찾고자 하였다. 반응변수는 Etch rate 및 profile angle로 결정하였으며, 약 200~400 um 에칭된 slit의 상단과 하단의 폭, 그리고 식각깊이를 SEM 측정사진을 통해 정한 후 etch rate 및 profile angle을 결정하였다. 인자는 식각속도 및 wall의 각도를 결정하는 식각 및 passivation 가스의 유량, chamber 압력(etching/passivation), 식각시간 등으로 정하였으며, 이들의 최대값과 최소값 2 수준으로 실험계획을 설계하였다. 식각 조건에 따라 8회의 실험을 수행하였다. 가스의 유량은 SF6 400 sccm, C4F8 400 sccm, 식각 싸이클 시간은 5.2~10.4 sec, passivation 싸이클시간 4 sec로 하였으며, 압력은 식각시 7.5 Pa, passivation 시 10 Pa로 할 경우가 가장 sharp하게 나타났다. Coil power 와 platen power는 각각 2.6 KW, 0.14 KW로 하였으며, 최적화를 위한 인자의 값들은 이 범위에서 조절하였다. 이러한 인자의 조건 조절을 통해 etch rate는 5.6 um/min~6.4 um/min, $88.9{\sim}89.1^{\circ}$의 profile angle을 얻을 수 있었다.

  • PDF

Pitch Detection of Speech Signals Using Wavelet Transform (웨이브렛 변환을 이용한 음성 신호의 피치 검출)

  • Lee, Min-Woo;Sohn, Joon-Il;Choi, Dong-Woo;Beack, Seung-Hwa;Kim, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.149-153
    • /
    • 1995
  • In this paper, wavelet transform with multi-resolution property is used to improve the accuracy of pitch estimation of speech signal. Pitch detection of speech signal is based on the local maxima by using wavelet transform. The wavelet transform of a signal is a multiscale decomposition that is well localized in space and frequency. The proposed pitch defection algorithm is suitable for both low-pitched and high-pitched speakers.

  • PDF

A Study on the Improvement of Pitch Autopilot Flight Control Law (세로축 자동조종 비행제어법칙 개선에 관한 연구)

  • Kim, Chong-Sup;Hwang, Byung-Moon;Lee, Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1104-1111
    • /
    • 2008
  • The supersonic advanced trainer based on digital flight-by-wire flight control system uses aircraft flight information such as altitude, calibrated airspeed and angle of attack to calculate flight control law, and this information is measured by IMFP(Integrated Multi-Function Probe) equipment. The information has triplex structure using three IMFP sensors. Final value of informations is selected by mid-value selection logic to have more flight data reliability. As the result of supersonic flight test, pitch oscillation is occurred due to IMFP noise when altitude hold autopilot mode is engaged. This tendency may affect stability and handling quality of an aircraft during autopilot mode. This paper addresses autopilot control law design to remove pitch oscillation and these control laws are verified by non-real time simulation and flight test. Also, pitch response characteristics of pitch attitude hold autopilot mode is improved by upgrading the control law structure and feedback gain tuning during bank turn.

Prediction of Pitch and Roll Dynamic Derivatives for Flight Vehicle using CFD (전산유체역학을 이용한 비행체의 피치와 롤 동안정 미계수 예측)

  • Lee, Hyung-Ro;Gong, Hyo-Joon;Kim, Beom-Soo;Lee, Seung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.395-404
    • /
    • 2012
  • This paper presents computations of the dynamic derivatives of three dimensional flight vehicle configurations using CFD. The pitch dynamic derivatives are computed from the pitch sinusoidal motion, while the roll damping is computed based on steady state calculation using a non-inertial frame method. The Basic Finner and the SDM(Standard Dynamic Model) are chosen for the benchmark tests against other numerical and experimental results. For the flow calculations, a 3-D Euler solver that can be run both on the non-inertial frame and on the inertial frame is developed. A dual-time stepping method is applied for the unsteady time accurate simulations. A good agreement of pitch-roll dynamic derivatives with previously published numerical results and the experimental results is observed.

Dynamic Models of Blade Pitch Control System Driven by Electro-Mechanical Actuator (전기-기계식 구동기를 이용한 블레이드 피치 조종 시스템의 동역학 모델)

  • Jin, Jaehyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.111-118
    • /
    • 2022
  • An electro-mechanical actuator (EMA) is an actuator that combines an electric motor with a mechanical power transmission elements, and it is suitable for urban air mobility (UAM) in terms of design freedom and maintenance. In this paper, the author presents the research results of the EMA that controls the rotor blade pitch angle of UAM. The actuator is based on an inverted roller screw and controls the blade pitch angle through a two-bar linkage. The dynamic equations for the actuator alone and the blade pitching motion with actuator were derived. For the latter, the equivalent moment of inertia is variable depending on the link angle due to the two-bar linkage. The variations of the equivalent moments of inertia are analyzed and compared in terms of the nut motion and the blade pitch motion. For an example model, the variation of the equivalent moment of inertia of the former is smaller than the latter, so it is judged that the dynamic equations derived from the point of view of the nut motion is suitable for the controller design.

Short-duration Electron Precipitation Studied by Test Particle Simulation

  • Lee, Jaejin;Kim, Kyung-Chan;Lee, Jong-Gil
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.317-325
    • /
    • 2015
  • Energy spectra of electron microbursts from 170 keV to 340 keV have been measured by the solid-state detectors aboard the low-altitude (680 km) polar-orbiting Korean STSAT-1 (Science and Technology SATellite). These measurements have revealed two important characteristics unique to the microbursts: (1) They are produced by a fast-loss cone-filling process in which the interaction time for pitch-angle scattering is less than 50 ms and (2) The e-folding energy of the perpendicular component is larger than that of the parallel component, and the loss cone is not completely filled by electrons. To understand how wave-particle interactions could generate microbursts, we performed a test particle simulation and investigated how the waves scattered electron pitch angles within the timescale required for microburst precipitation. The application of rising-frequency whistler-mode waves to electrons of different energies moving in a dipole magnetic field showed that chorus magnetic wave fields, rather than electric fields, were the main cause of microburst events, which implied that microbursts could be produced by a quasi-adiabatic process. In addition, the simulation results showed that high-energy electrons could resonate with chorus waves at high magnetic latitudes where the loss cone was larger, which might explain the decreased e-folding energy of precipitated microbursts compared to that of trapped electrons.

Variable stability system control law development for in-flight simulation of pitch/roll/yaw rate and normal load

  • Ko, Joon Soo;Park, Sungsu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.412-418
    • /
    • 2014
  • This paper describes the development of variable stability system (VSS) control laws for the KFA-i to simulate the dynamics of KFA-m aircraft. The KFA-i is a single engine, Class IV aircraft and was selected as an in-flight simulator (IFS) aircraft, whereas the KFA-m is a simulated aircraft that is based on the F-16 aircraft. A 6-DoF math model of KFA-i aircraft was developed, linearized, and separated into longitudinal and lateral motion for VSS control law synthesis. The KFA-i aircraft has five primary control surfaces: two flaperons, two all movable horizontal tails, and one rudder. Flaperons are used for load control, the horizontal tails are used for pitch and roll rate control, and the rudder is used for yaw rate control. The developed VSS control law can simulate four parameters of the KFA-m aircraft simultaneously, such as pitch, roll, yaw rates, and load. The simulation results show that KFA-i follows the responses of KFA-m with high accuracy.

Pitch Control for Wind Turbine Generator System (풍력 발전시스템 피치 제어에 관한 연구)

  • Park, Jong-Hyeok;No, Tae-Su;Mun, Jeong-Hui;Kim, Ji-Eon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.25-34
    • /
    • 2006
  • In this paper, a method of designing the pitch control algorithm for the wind turbine generator system (WTGS) and results of nonlinear simulation are presented. For this, the WTGS is treated as a multibody system and the blade element and momentum theory are adopted to model the aerodynamic force and torque acting the rotor blades. For the purpose of controller design, the WTGS is approximated to 1 DOF system using the fact that the WTGS is eventually a constrained multibody system. Then a classical PID controller is designed and used to regulate the rotational speed of the generator. FORTRAN based nonlinear simulation program is written and used to evaluate the performance of the proposed controller at the various wind scenario and operational modes.

An experimental study on screw conveyor system of EPB shield TBM (EPB Shield TBM의 스크루 컨베이어 시스템에 관한 실험적 연구)

  • Kim, Sang-Hwan;Kim, Jin-Dae;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.519-530
    • /
    • 2011
  • The screw conveyor system installed in EPB Shield TBM chamber was manufactured in small scale for pilot test to investigate the tunnel muck hauling system that could control the earth pressure and support face thrust force. In this experimental study, there were three different test conditions that include screw angles, screw pitch, and screw RPM. Through analysis on test results based on the muck hauling amount per unit time from screw conveyor, the optimum conditions of screw conveyor were proposed to be efficiently performed by the muck processing system. Finally, this study provided the meaningful results such as optimum screw angle, screw RPM, and screw pitch for anti-reverse flow of muck hauling.