• Title/Summary/Keyword: pitch level

Search Result 274, Processing Time 0.03 seconds

Analysis of instrument exercise using IMU about symmetry

  • Yohan Song;Hyun-Bin Zi;Jihyeon Kim;Hyangshin Ryu;Jaehyo Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.1
    • /
    • pp.296-305
    • /
    • 2023
  • The purpose of this study is to measure and compare the balance of motion between the left and right using a wearable sensor during upper limb exercise using an exercise equipment. Eight participants were asked to perform upper limb exercise using exercise equipment, and exercise data were measured through IMU sensors attached to both wrists. As a result of the PCA test, Euler Yaw(Left: 0.65, Right: 0.75), Roll(Left: 0.72, Right: 0.58), and Gyro X(Left: 0.64, Right: 0.63) were identified as the main components in the Butterfly exercise, and Euler Pitch(Left: 0.70, Right 0.70) and Gyro Z(Left: 0.70, Right: 0.71) were identified as the main components in the Lat pull down exercise. As a result of the Paired-T test of the Euler value, Yaw's Peak to Peak at Butterfly exercise and Roll's Mean, Yaw's Mean and Period at Lat pull down exercise were smaller than the significance level of 0.05, proving meaningful difference was found. In the Symmetry Index and Symmetry Ratio analysis, 89% of the subjects showed a tendency of dominant limb maintaining relatively higher angular movement performance then non-dominant limb as the Butterfly exercise proceeds. 62.5% of the subjects showed the same tendency during the Lat pull down exercise. These experimental results indicate that meaningful difference at balance of motion was found according to an increase in number of exercise trials.

Synthetic Drill System Based on HLA (HLA 기반의 종합 훈련 시스템)

  • Hwang, Jae-Jun;Lee, Kyu-Young;Jun, Hyang-Sik;Jun, Dae-Gun;Choi, Hyung-Sik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.05a
    • /
    • pp.73-75
    • /
    • 2008
  • 현대는 시뮬레이션을 통하여 많은 모의 훈련을 대체하고 있다. 시뮬레이터는 고유의 훈련 임무를 수행하기 위하여 기획, 제작 되어진다. 하지만 현대와 같은 종합적인 입체훈련 체계는 고유의 훈련 임무 이외에 개개의 시뮬레이터의 임무가 가상의 종합 시뮬레이션 환경에 참가한 통합 훈련 체계의 필요성을 야기하게 되었다. 또한 각각의 시뮬레이터의 기능은 보다 세분화 되었으며 높은 성능을 요구하게 되었다. 현재 KA-32 헬기 시뮬레이터 영상 프로그램을 제작하고 있는 한국소프트스페이스(주)는 독립적인 시뮬레이터들에 HLA(High Level Architecture)를 적용하여 하나의 종합 훈련 시스템을 구축하였다. 고유의 임무를 지닌 시뮬레이테는 각각의 임무를 가상의 종합 훈련 환경에 참가하여 서로간의 훈련 효과를 극대화 시켜화 시켜준다. HLA 기반의 종합 훈련 시스템의 RTI(Run-Time Infrastructure)는 Pitch 사의 pRTI를 사용하였으며, 가상의 종합 시뮬레이션 환경의 핵심이 되는FOM(Federation Object Model)은 호환성을 및 모든 객체의 표현을 위하여 RPR FOM(Real-time Reference FOM)을 사용하였다. 본 종합 훈련 시스템에서는 각각의 시뮬레이션간에 최고의 성능을 내기 위하여, 기능 세부화 하여 구성하였다. Terrion 사의 FLAMES는 종합 훈련 시스템의 시뮬레이션 진행/설정 및 분석을 담당하며, Mantis는 훈련 상황을 사실감 있는 3 차원 영상으로 참가자에게 전달하여 준다.

A Study on JFET and FLR Optimization for the Design and Fabrication of 3.3kV SiC MOSFET (3.3kV SiC MOSFET 설계 및 제작을 위한 JFET 및 FLR 최적화 연구)

  • YeHwan Kang;Hyunwoo Lee;Sang-Mo Koo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.155-160
    • /
    • 2023
  • The potential performance benefits of Silicon Carbide(SiC) MOSFETs in high power, high frequency power switching applications have been well established over the past 20 years. In the past few years, SiC MOSFET offerings have been announced by suppliers as die, discrete, module and system level products. In high-voltage SiC vertical devices, major design concerns is the edge termination and cell pitch design Field Limiting Rings(FLR) based structures are commonly used in the edge termination approaches. This study presents a comprehensive analysis of the impact of variation of FLR and JFET region on the performance of a 3.3 kV SiC MOSFET during. The improvement in MOSFET reverse bias by optimizing the field ring design and its influence on the nominal operating performance is evaluated. And, manufacturability of the optimization of the JFET region of the SiC MOSFET was also examined by investigating full-map electrical characteristics.

  • PDF

Numerical Investigation of Motion Response of the Tanker at Varying Vertical Center of Gravities

  • Van Thuan Mai;Thi Loan Mai;Hyeon Kyu Yoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • The vertical center of gravity (VCG) has a significant impact on the roll motion response of a surface ship, particularly oil tankers based on the oil level in the tanker after discharging oil at several stations or positional changes, such as changes in the superstructure and deck structure. This study examined the motion response of the Korea very large crude carrier 2 (KVLCC2) at various VCGs, especially roll motion when the VCG changed. The potential theory in the Ansys AQWA program was used as a numerical simulation method to calculate the motion response. On the other hand, the calculations obtained through potential theory overestimated the roll amplitudes during resonance and lacked precision. Therefore, roll damping is a necessary parameter that accounts for the viscosity effect by performing an experimental roll decay. The roll decay test estimated the roll damping coefficients for various VCGs using Froude's method. The motion response of the ship in regular waves was evaluated for various VCGs using the estimated roll-damping coefficients. In addition, the reliability of the numerical simulation in motion response was verified with those of the experiment method reported elsewhere. The simulation results showed that the responses of the surge, sway, heave, pitch, and yaw motion were not affected by changing the VCG, but the natural frequency and magnitude of the peak value of the roll motion response varied with the VCG.

Performance analyses of naval ships based on engineering level of simulation at the initial design stage

  • Jeong, Dong-Hoon;Roh, Myung-Il;Ham, Seung-Ho;Lee, Chan-Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.446-459
    • /
    • 2017
  • Naval ships are assigned many and varied missions. Their performance is critical for mission success, and depends on the specifications of the components. This is why performance analyses of naval ships are required at the initial design stage. Since the design and construction of naval ships take a very long time and incurs a huge cost, Modeling and Simulation (M & S) is an effective method for performance analyses. Thus in this study, a simulation core is proposed to analyze the performance of naval ships considering their specifications. This simulation core can perform the engineering level of simulations, considering the mathematical models for naval ships, such as maneuvering equations and passive sonar equations. Also, the simulation models of the simulation core follow Discrete EVent system Specification (DEVS) and Discrete Time System Specification (DTSS) formalisms, so that simulations can progress over discrete events and discrete times. In addition, applying DEVS and DTSS formalisms makes the structure of simulation models flexible and reusable. To verify the applicability of this simulation core, such a simulation core was applied to simulations for the performance analyses of a submarine in an Anti-SUrface Warfare (ASUW) mission. These simulations were composed of two scenarios. The first scenario of submarine diving carried out maneuvering performance analysis by analyzing the pitch angle variation and depth variation of the submarine over time. The second scenario of submarine detection carried out detection performance analysis by analyzing how well the sonar of the submarine resolves adjacent targets. The results of these simulations ensure that the simulation core of this study could be applied to the performance analyses of naval ships considering their specifications.

Prosodic Boundary Effects on the V-to-V Lingual Movement in Korean

  • Cho, Tae-Hong;Yoon, Yeo-Min;Kim, Sa-Hyang
    • Phonetics and Speech Sciences
    • /
    • v.2 no.3
    • /
    • pp.101-113
    • /
    • 2010
  • The present study investigated how the kinematics of the /a/-to-/i/ tongue movement in Korean would be influenced by prosodic boundary. The /a/-to-/i/ sequence was used as 'transboundary' test materials which occurred across a prosodic boundary as in /ilnjəʃ$^h$a/ # / minsakwae/ ('일년차#민사과에' 'the first year worker' # 'dept. of civil affairs'). It also tested whether the V-to-V tongue movement would be further influenced by its syllable structure with /m/ which was placed either in the coda condition (/am#i/) or in the onset condition (/a#mi). Results of an EMA (Electromagnetic Articulagraphy) study showed that kinematical parameters such as the movement distance (displacement), the movement duration, and the movement velocity (speed) all varied as a function of the boundary strength, showing an articulatory strengthening pattern of a "larger, longer and faster" movement. Interestingly, however, the larger, longer and faster pattern associated with boundary marking in Korean has often been observed with stress (prominence) marking in English. It was proposed that language-specific prosodic systems induce different ways in which phonetics and prosody interact: Korean, as a language without lexical stress and pitch accent, has more degree of freedom to express prosodic strengthening, while languages such as English have constraints, so that some strengthening patterns are reserved for lexical stress. The V-to-V tongue movement was also found to be influenced by the intervening consonant /m/'s syllable affiliation, showing a more preboundary lengthening of the tongue movement when /m/ was part of the preboundary syllable (/am#i/). The results, together, show that the fine-grained phonetic details do not simply arise as low-level physical phenomena, but reflect higher-level linguistic structures, such as syllable and prosodic structures. It was also discussed how the boundary-induced kinematic patterns could be accounted for in terms of the task dynamic model and the theory of the prosodic gesture ($\pi$-gesture).

  • PDF

Effect of Applied Voltage Bias on Electrochemical Migration in Eutectic SnPb Solder Alloy

  • Lee, Shin-Bok;Jung, Ja-Young;Yoo, Young-Ran;Park, Young-Bae;Kim, Young-Sik;Joo, Young-Chang
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.282-285
    • /
    • 2007
  • Smaller size and higher integration of electronic systems make narrower interconnect pitch not only in chip-level but also in package-level. Moreover electronic systems are required to operate in harsher conditions, that is, higher current / voltage, elevated temperature / humidity, and complex chemical contaminants. Under these severe circumstances, electronic components respond to applied voltages by electrochemically ionization of metals and conducting filament forms between anode and cathode across a nonmetallic medium. This phenomenon is called as the electrochemical migration. Many kinds of metal (Cu, Ag, SnPb, Sn etc) using in electronic packages are failed by ECM. Eutectic SnPb which is used in various electronic packaging structures, that is, printed circuit boards, plastic-encapsulated packages, organic display panels, and tape chip carriers, chip-on-films etc. And the material for soldering (eutectic SnPb) using in electronic package easily makes insulation failure by ECM. In real PCB system, not only metals but also many chemical species are included. And these chemical species act as resources of contamination. Model test systems were developed to characterize the migration phenomena without contamination effect. The serpentine-shape pattern was developed for analyzing relationship of applied voltage bias and failure lifetime by the temperature / humidity biased(THB) test.

Unsteady RANS Analysis of the Hydrodynamic Response for a Ship with Forward Speed in Regular Wave (규칙파중 전진하는 선박의 유체역학적 응답에 대한 비정상 수치해석)

  • Park, Il-Ryong;Kim, Kwang-Soo;Kim, Jin;Van, Suak-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.1
    • /
    • pp.29-41
    • /
    • 2008
  • The present paper provides a CFD analysis of diffraction problem for a ship with forward speed using an unsteady RANS simulation method, a WAVIS code. The WAVIS viscous solver adopting a finite volume method has second order accuracy in time and field discretizaions for the RANS equations. A two phase level-set method and a realizable ${\kappa}-{\varepsilon}$ turbulence model are adopted to compute the free surface and to meet the turbulence closure, respectively. To validate the capability of the present numerical methods for the simulation of an unsteady progressive regular wave, computations are performed for three grid sets with refinement ratio of ${\sqrt{2}}$. The main simulation is performed for a DTMB5512 model with a forward speed in a regular head sea condition. Validation of the present numerical method is carried out by comparing the present CFD results with available unsteady experimental data published in the 2005 Tokyo CFD Workshop: resistance, heave force, pitch moment, unsteady free surface elevations and velocity fields.

Modeling and Analysis of Control Scheme for Voltage Source Inverter Based Grid-connection of Wind Turbine (전압원인버터를 이용한 계통연계형 풍력발전의 출력제어 모의 및 해석)

  • 김슬기;김응상
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.154-163
    • /
    • 2003
  • Grid connection essentially requires a wind energy conversion system (WECS) to not only supply adequate power responding to constantly varying wind speed but also provide a specified level of voltage magnitude and frequency that is acceptable in the electric power network. To satisfy such requirements, appropriate control schemes of a wind turbine to be connected to the power grid should be employed. This paper presents an output control strategy of a grid-connected wind power generation, which consists of a fixed-pitch wind turbine, a synchronous generator and a AC-DC-AC component with a voltage source inverter built in, and performs modelling and analysis of the strategy using PSCAD/EMTDC, an electromagnetic transient analysis software. Real power output control of the voltage source inverter is implemented to extract the maximum energy from wind speed inputted through wind blades and reactive power control, to keep the terminal voltage of WECS at a specific level. SPWM switching method is used to reduce the harmonics and maintain 60 ㎐ of the output frequency. The wind turbine performance and output corresponding to wind variation and the terminal load change is simulated and analysed.

Effects of Inorganic Coagulants on Sizing and Contamination in Newsprint Mill (무기 응결제가 신문용지의 사이즈도와 공정오염에 미치는 영향)

  • Lee, Tai Ju;Seo, Jin Ho;Lee, Kwang Seob;Jeong, Sung Hyun;Ryu, Jeong Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.3
    • /
    • pp.40-46
    • /
    • 2015
  • For some Korean newsprint mill, addition level of aluminum sulfate has been reduced because sulfur from aluminum sulfate has detrimental effect on the efficiency of anaerobic water treatment. At this moment, an unexpected decrease in sizing degree of TMP mixed newspaper was occurred. The phenomena means that hydrophobic substance usually originated from TMP cannot be fixed on the paper. This study focused on effect of alum and PAC on sizing of paper and contamination. Also, substitutability of PAC was discussed as a possible alternatives of aluminum sulfate under anaerobic condition of water treatment. Evaluation of sizing degree and pitch deposit potential were performed at the varied addition level of PAC and aluminum sulfate. Hydrophobic substance mainly derived from TMP could be fixed on the surface of fiber by PAC. Fines retention was not changed by replacing aluminum sulfate with PAC. Additionally, fixing of hydrophobic substance without excessive agglomeration can be enhanced by PAC with low molecular weight. Consequently, sizing degree of newspaper and contamination of recycling process of ONP can be controlled by low molecular weighted PAC.