• Title/Summary/Keyword: pitch error

Search Result 256, Processing Time 0.029 seconds

Development of Computer Aided Measurement and Compensation System for Linear Pitch Error Correction in CNC Machine Tools Implementing a New Optimal Correction Algorithm (CNC 공작기계 선형피치오차의 최적 보정알고리즘을 구현하는 자동 측정 및 보정 시스템의 개발)

  • 이석원;박희재;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.69-77
    • /
    • 1998
  • Linear displacement accuracy is one of the most important factors that determine machine tool accuracy The laser interferometer has been usually recommended for the measurement of linear displacement accuracy. In this paper, microcomputer aided measurement and compensation system has been developed for the pitch error in a CNC machine tool. For accurate pitch error calculation. the analysis code for the pitch error has been also implemented according to the international standards (ISO). The PC based automatic compensation system for the pitch error is also implemented. A new algorithm for calculating optimum value for pitch error compensation is proposed, minimizing the deviation at each target points. The development system has been applied to a practical CNC maching center and the performance has been demonstrated.

  • PDF

CNC 공작기계 선형피치오차의 최적 보정 알고리즘을 구현하는 자동측정 및 보정 시스템의 개발

  • 이석원;박희재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.297-302
    • /
    • 1997
  • Linear displacement accuracy is one of the most important factors that determine machine tool accuracy. The laser interferometer has been usually recommended for the measurement of linear displacement accuracy. In this paper, microcomputer aided measurement and compensation system has been developed forthe pitch error in a CNC machine tool. For accurate pitch error calculation, the analysis code for the pitch error has been also implemented according to the international standards(ISO). The PC based automatic compensation system for the pitch error is also implemented. A new algorithm for calculating optimum value for pitch error compensation is proposed, minimizing the deviation at each target points. The development system has been applied to a practical CNC maching center and the performance has been demonstrated.

Precision Measurement System forBall Screw Pitch Error (볼스크류 전구간 피치오차 측정시스템)

  • 박희재;김인기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.279-285
    • /
    • 1993
  • This paper presents a precision automatic measuring system for ball screw Pitch. Ball screw is mounted on a precision indexing table, and the ball screw pitch is measured via magnetic scale, where the indexing and measurement are performed by a PC. For precision indexing of ball screw, direct driven motor is coupled to the designed dead and live centers; the performance of the centers are assessed with a precision master sylinder,such as radial motion,tilt motion, and axial motions. An error compensation model is constructed for the measurement system of ball screw pitch, where the error motions of indexing system as well as the scale measurement system are combined to give the measurement error for the ball screw. The developed system proposes an automated precision measurement system for manufacturers and users of ball screw.

  • PDF

Comparison of Target Localization Error between Conventional and Spiral CT in Stereotactic Radiosurgery

  • Kim, Jong-Sik;Ju, Sang-Kyu;Park, Young-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.12 no.1
    • /
    • pp.20-25
    • /
    • 2000
  • The accuracy of the target localization was evaluated by conventional and spiral CT in stereotactic radiosurgerv. Conventional and spiral CT images were obtained with geometrical phantom, which was designed to produce exact three-dimensional coordinates of several objects within 0.1mm error range. Geometrical phantom was attached by BRW headframe, intermediate head ring, and CT localizer. Twentv-seven slices of conventional CT image were scanned at 3 mm slice thickness. Spiral CT images were scanned at 3 mm slice thickness from the pitch value 1 to 3, and twenty-seven slices of image were obtained per each the pitch value. These CT images were transferred to a treatment planning system(X-knife, Radionics) by ethernet, Three-dimensional coordinates of these images measured from the treatment planning system were compared to known values of geometrical phantom. The mean localization error of the target localization of conventional CT was 1.4mm. In case of spiral CT, the error of the target localization was within 1.6mm from the pitch value 1 to 1.3, but was more than 30mm above the pitch value 1.5. In conclusion, as the localization error of spiral CT was increased in high pitch value compared to conventional CT, the application of spiral CT will be with caution in stereotactic radiosurgery.

  • PDF

레이저를 이용한 볼나사 리드오차 측정에 관한 연구

  • 윤영식;박철우;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.254-259
    • /
    • 1994
  • Recently, the precision ball screw becomes the essence of the high-precision industries and is playing a key role in the positioning devices. The standard and definition of pitch error in a precision ball screw is specified by KS, JIS or ISO. However, the method of measuring the pitch error is not concrete. In this study. laser measurement system(LMS) with a laser position transducer and a machine-tools is developed. In order to verify the stability of the LMS, several experiments with the standard ball screw is performed.

  • PDF

Study of the CatcherTM Couch's Usefulness (토모치료기 CatcherTM Couch의 유용성에 대한 고찰)

  • Um, Ki Cheon;Lee, Chung Hwan;Jeon, Soo Dong;Song, Heung Kwon;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.2
    • /
    • pp.65-74
    • /
    • 2019
  • Purpose: Recently, A Catcher was added to prevent sagging in Radixact® X9. In this study, We quantitatively compared general couch of Tomo-HDA® with catcher couch of Radixact® X9 using the human phantom and evaluated usefulness of catcher. Materials and methods: We used rando phantom for phantom study and set the each iso-center of head and neck region and Pelvis region for region parameter. Furthermore, We used hand made low melting point alloys for weight parameter. MVCT(Mega Voltage Computed Tomography) images were acquired for vertical error and rotation(pitch) error measurement increasing weight(A: 15kg, A+B: 30kg, A+B+C: 45kg). We selected 120 patients who has been treated using Tomotherpy machine for patient study. 60 patients has been treated in Tomo-HDA® and the other 60 patients treated in Radixact® X9. In the patient study methods, vertical error and rotation(pitch) error was measured for mean value calculation using MVCT images acquired on first day of radiation therapy. Result: Result of phantom study, Vertical error and rotation(pitch) error was increased proportionally increased as the weight increases in general couch of Tomo-HDA®. each maximum value was 7.52mm, 0.38° in head and neck region and 11.94mm, 0.92° in pelvis region. However, We could confirm that there was stable error range(0.02~0.1mm, 0~0.04°) in Catcher couch of Radixact®. Result of patient study, The head and neck region was measured 4.79mm 0.33° lower, and the pelvis region was measured 7.66mm, 0.22° lower in Catcher couch of Radixact® X9. Conclusion: In this study, Vertical error and rotation(pitch) error was proportionally increased as the weight increases in general couch of Tomo-HDA®. Especially, The pelvis region error was more increased than the head and neck region error. However, Vertical error and rotation(pitch) error was regularly generated regardless of weight or regions in CatcherTM couch of Radixact® X9 that this study's purpose. In conclusion, CatcherTM couch of Radixact® X9 can minimize mechanical error that couch sagging. Furthermore, The pelvis region is more efficiency than head and neck region. In radiation therapy using Tomotherapy machine, it is regarded that may contribute to minimizing unadjusted pitch error due to characters of Tomotherapy.

Pitch Detection Using Variable LPF

  • Hong KEUM
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.963-970
    • /
    • 1994
  • In speech signal processing, it is very important to detect the pitch exactly. The algorithms for pitch extraction that have been proposed until now are not enough to detect the fine pitch in speech signal. Thus we propose the new algorithm which takes advantage of the G-peak extraction. It is the method to find MZCI(maximum zer-crossing interval) which is defined as cut-off bandwidth rate of LPF (low pass filter)and detect the pitch period of the voiced signals. This algorithm performs robustly with a gross error rate of 3.63% even in 0 dB SNR environment. The gross error rate for clean speech is only 0.18%. Also it is able to process all course with speed.

  • PDF

Pitch Angle Controller of Wind Turbine System Using Neural Network (신경망을 이용한 풍력 발전시스템의 피치제어)

  • Hong, Min-Ho;Ko, Seung-Youn;Kim, Ho-Chan;Hur, Jong-Chul;Kang, Min-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1059-1065
    • /
    • 2014
  • Wind turbine system can obtain the maximum wind energy using torque control under the rated wind speed, and wind turbine power is controlled as the rated power using pitch control over the rated wind speed. In this paper, we present a method for wind turbine pitch controller using neural networks. The purpose of the pitch control is to control generator speed and power in the above rated wind speed. To improve the neural network pitch controller, the difference between a rated and current speed of generator has been used for another input of neural networks as well as wind speed. Error back-propagation algorithm is used for training the neural network pitch controller and simulation and Matlab/Simulink is used for verifying that this system is controlled well.

A Study on the Detection and the Correction of Prosodic Errors Produced by Chinese Korean-Learners (중국인 학습자들의 한국어 강세구 실현양상과 오류진단 및 교정방안 연구)

  • Yune, Young-Sook
    • Phonetics and Speech Sciences
    • /
    • v.4 no.2
    • /
    • pp.51-59
    • /
    • 2012
  • The purpose of this study is to examine the pitch pattern of Korean accentual phrases produced by Chinese Korean-learners in the reading of a Korean text. Korean accentual phrase is determined by a specific F0 contour. And the pitch contour of APs differ depending on their length and the nature of initial segment. In order to examine if Chinese speakers are also aware such a phonetic properties, we have examined the AP pitch contours produced by 15 Chinese speakers differing in proficiency, and compared them to pitch contours produced by six Korean native speakers. The results show that Chinese speakers' pitch errors were observed in initial segment-tone interaction and in type of pitch patterns. However, even though Chines speakers produced the same type of pitch patterns, internal tonal modulation differs from native speakers. Finally, on the basis of theses results, we proposed a teaching method that visualizes the F0 contour.

A Study on Improving Voice Quality and Pitch Searching of the VSELP Coder (VSELP 부호화기의 음질 및 주기탐색 개선에 관한 연구)

  • 성기철;문상재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.4
    • /
    • pp.740-749
    • /
    • 1994
  • This paper presents method for improving the performance of the VSELP speech coder. The hybrid method is employed for pitch period searching. Pitch searching time is reduced and pitch detection error, caused by quantization error of excitation signal of encoder in VSELP coder, is reduced by this method. This paper also adopts a pitch period enhancement filter and an adaptive first order filter. In this result, pitch period searching time is reduced to 26%, and MOS of reconstructed speech signal is increased by 3.19 to 4.04.

  • PDF