• Title/Summary/Keyword: pitch based carbon fiber

Search Result 84, Processing Time 0.03 seconds

Molecular structure effects of the pitches on preparation of activated carbon fibers from electrospinning

  • Kim, Bo-Hye;Wazir, Arshad Hussain;Yang, Kap-Seung;Bang, Yun-Hyuk;Kim, Sung-Ryong
    • Carbon letters
    • /
    • v.12 no.2
    • /
    • pp.70-80
    • /
    • 2011
  • Two pitches with different average molecular structures were electrospun and compared in terms of the properties of their fibers after oxidative stabilization, carbonization, and activation. The precursor with a higher molecular weight and greater content of aliphatic groups (Pitch A) resulted in better solubility and spinnability compared to that with a lower molecular weight and lower aliphatic group content (Pitch B). The electrical conductivity of the carbon fiber web from Pitch A of 67 S/cm was higher than that from Pitch B of 52 S/cm. The carbon fiber web based on Pitch A was activated more readily with lower activation energy, resulting in a higher specific surface area compared to the carbon fiber based on Pitch B (Pitch A, 2053 $m^2/g$; Pitch B, 1374 $m^2/g$).

Reaction Rates for the Oxidation of Pitch based Carbon Fibers in Air and Carbon Dioxide Gas

  • Roh, Jae-Seung
    • Carbon letters
    • /
    • v.4 no.4
    • /
    • pp.185-191
    • /
    • 2003
  • Two types of carbon fiber based high modulus- and isotropic-pitch were exposed to isothermal oxidation in air and $CO_2$ gas and the weight change was measured by TGA apparatus. The kinetic equation was introduced $f=1-{\exp}(-at^b)$ and the constant b was obtained in the range of 1.02~1.68 for the isotropic fiber and obtained 0.91~1.93 for the high modulus fiber respectively. In considering the effect of the atmosphere for isothermal oxidation, the value of the constant b obtained in the carbon dioxide was higher than that obtained in the air. Therefore, it was found that the pitch based carbon fiber shows sigmoidal characteristic when it is oxidized in the carbon dioxide. In addition, it was also found that $k_f = 0.5$, which was reaction constant at f = 0.5, was a very useful parameter for evaluation of the oxidation reactivity of pitch based carbon fibers. According to the consideration, it is suggested that the conversion-time curves of the pitch based carbon fibers are correlated by normalized equation $f=1-{\exp}(-A{\tau}^B)$, where ${\tau}=t/t_f= 0.5$.

  • PDF

Pitch based carbon fibers for automotive body and electrodes

  • Yang, Kap Seung;Kim, Bo-Hye;Yoon, Seong-Ho
    • Carbon letters
    • /
    • v.15 no.3
    • /
    • pp.162-170
    • /
    • 2014
  • Pitch is an attractive raw material for carbon fiber precursors due to its low cost stemming from its availability as a residue of coking and petroleum processes. Ford Motor Company reported a carbon fiber target price of $11.0/kg by using a fast cycle-time manufacturing method with carbon fiber in an inexpensive format, allowing for an average retail price of gasoline of $3.58/gallon. They also recommended the use of carbon fiber with strength of 1700 MPa, modulus of 170 GPa, and 1.5% elongation. This study introduced a ca. $5.5{\mu}m$ carbon fiber with 2000 MPa tensile strength obtained from a precursor through simple distillation of petroleum residue. Petroleum pitch based carbon nanofibers prepared via electrospinning were characterized and potential applications were introduced on the basis of their large specific surface area and relatively high electrical conductivity.

Mechanical and electrical properties of cement paste incorporated with pitch-based carbon fiber

  • Rhee, Inkyu;Kim, Jin Hee;Park, Sang Hee;Lee, Sungho;Ryu, Bong Ryeul;Kim, Yoong Ahm
    • Carbon letters
    • /
    • v.23
    • /
    • pp.22-29
    • /
    • 2017
  • The compressive strength and electrical resistance of pitch-based carbon fiber (CF) in cementitious materials are explored to determine the feasibility of its use as a functional material in construction. The most widely used CFs are manufactured from polyacrylonitrile (PAN-based CF). Alternatively, short CFs are obtained in an economical way using pitch as a precursor in a melt-blown process (pitch-based CF), which is cheaper and more eco-friendly method because this pitch-based CF is basically recycled from petroleum residue. In the construction field, PAN-based CFs in the form of fabric are used for rehabilitation purposes to reinforce concrete slabs and piers because of their high mechanical properties. However, studies have revealed that construction materials with pitch-based CF are not popular. This study explores the compressive strength and electrical resistances of a cement paste prism using pitch-based CF.

Relationship Between Exothermic Heat and Carbon Contents of Pitch-based Carbon Fiber

  • Lee, Jae-Young;Oh, Jong-Hyun;Yang, Xiao Ping;Ryu, Seung-Kon
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.202-207
    • /
    • 2009
  • Pitch-based carbon fiber tows were prepared from naphtha cracking bottom oil by reforming and carbonization. The relationship between exothermic heat and carbon contents of the fiber was investigated by changing the carbonization conditions. The carbon contents and the crystallinities of isotropic pitch-based carbon fibers were 86.8~93.8 wt% and 33.7~40.1%, respectively, which were linearly proportional to the increase of carbonization temperature from 700 to $1000^{\circ}C$. The exothermic heat (temperature increase) of fiber tows was measured in a short time, which was also linearly proportional to the increase of carbon contents due to the increase of crystallinity, even though the crystallinity was low. Therefore, the carbon contents or carbonization degree of fibers can rapidly and indirectly be estimated by measuring the surface temperature increase of fibers.

Tensile Strength of Cement Mortar using Pitch-based Carbon Fiber Derived from Oil Residues (석유피치 재활용 탄소섬유를 혼입한 모르타르의 인장 특성)

  • Rhee, Inkyu;Lee, Jun Seok;Kim, Jin Hee;Kim, Yoong Ahm;Kim, Woo
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.20-28
    • /
    • 2017
  • The direct tensile strength of the mortar specimen containing pitch-based carbon fiber was ranged between 1/27~1/22 as compared to the average compressive strength of mortar. It was found that the direct tensile strength of the mortar containing the same amount of PAN-based carbon fiber was around 1/15. While the case of the control specimen without the carbon fiber was around 1/29. One the other hands, the flexural tensile strength of the mortar containing pitch-based carbon fibers was about 1/12 as compared to the average compressive strength. In case of the mortar specimen with PAN-based carbon fiber and control mortar were 1/10 and 1/13.5, respectively. The tensile performance of the mortar with pitch-based carbon fiber was found to be intermediate between control mortar and the reinforced mortar incorporated with the PAN-based carbon fiber.

Preparation of isotropic spinnable pitch and carbon fiber from biomass tar through the co-carbonization with ethylene bottom oil

  • Yang, Jianxiao;Shi, Kui;Li, Xuanke;Yoon, Seong-Ho
    • Carbon letters
    • /
    • v.25
    • /
    • pp.89-94
    • /
    • 2018
  • In this study, we tried to prepare an isotropic spinnable pitch which can be useful to prepare the general purpose carbon fiber through the co-carbonization of biomass tar with ethylene bottom oil under two different preparation methods (atmospheric distillation, pressurized distillation). The results showed that the ethylene bottom oil added co-carbonization was very effective to decrease of the oxygen contents for obtaining a stable spinnable pitch. The pressurized distillation was more effective to reduce the oxygen functional groups of pitches than atmospheric distillation. The obtained spinnable pitch by the pressurized distillation showed higher pitch yield of 42% and lower oxygen content of 9.12% than the spinnable pitch by the atmospheric distillation. The carbon fiber derived from the pressurized distillation spinnable pitch by carbonization at $800^{\circ}C$ for 5 min showed that the higher tensile strength of carbon fiber was increased up to 800 MPa.

Mechanical Properties of C-type Mesophase Pitch-based Carbon Fibers

  • Ryu, Seung-Kon;Rhee, Bo-Sung;Yang, Xiao Ping;Lu, Yafei
    • Carbon letters
    • /
    • v.1 no.3_4
    • /
    • pp.165-169
    • /
    • 2001
  • The C-type mesophase pitch-based carbon fiber (C-MPCF) was prepared throuch C-type spinnerette and compared the mechanical properties to those of round type mesophase pitch fiber (R-MPCF) and C-type isotropic pitch fiber (C-iPCF). The tensile strength and modulus of C-MPCF were about 18.6% and 35.7% higher than those of R-MPCF. The tensile strength of C-MPCF was 62% higher than that of C-iPCF of the same $8{\mu}m$ thickness because of more linear transverse texture, which could be easily converted to graphitic crystallinity during heat treatment. The torsional rigidity of C-MPCF was 2.37 times higher than that of R-MPCF. The electrical resistivity of C-MPCF was $8{\mu}{\Omega}{\cdot}m$. The C-iPCF shows far lower electrical resistivity than R-iPCF as well as the mesophase carbon fiber because of better alignment of texture to the fiber axis.

  • PDF

Thermal Anisotropy of Hollow Carbon Fiber-Carbon Composite Materials

  • Yang, Chun-Hoi;Shim, Hwan-Boh
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.91-95
    • /
    • 2005
  • Carbon composites were prepared with pitch-based round, C, hollow-type carbon fibers and pitch matrix. The thermal conductivities parallel and perpendicular to the fiber axis were measured by steady-state method. It was found that the thermal conductivities depended on the cross-sectional forms of the reinforcing fibers as well as the reinforcing orientation and carbon fiber precusors. Especially, mesophase pitch-based hollow carbon fiber-carbon composites had the most excellent thermal anisotropy, which was above 100.

Fabrication and Characterization of a Pressure Sensor using a Pitch-based Carbon Fiber (탄소섬유를 이용한 압력센터 제작 및 특성평가)

  • Park, Chang-Sin;Lee, Dong-Weon;Kang, Bo-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.417-424
    • /
    • 2007
  • This paper reports fabrication and characterization of a pressure sensor using a pitch-based carbon fiber. Pitch-based carbon fibers have been shown to exhibit the piezoresistive effect, in which the electric resistance of the carbon fiber changes under mechanical deformation. The main structure of pressure sensors was built by performing backside etching on a SOI wafer and creating a suspended square membrane on the front side. An AC electric field which causes dielectrophoresis was used for the alignment and deposition of a carbon fiber across the microscale gap between two electrodes on the membrane. The fabricated pressure sensors were tested by applying static pressure to the membrane and measuring the resistance change of the carbon fiber. The resistance change of carbon fibers clearly shows linear response to the applied pressure and the calculated sensitivities of pressure sensors are $0.25{\sim}0.35 and 61.8 ${\Omega}/k{\Omega}{\cdot}bar$ for thicker and thinner membrane, respectively. All these observations demonstrated the possibilities of carbon fiber-based pressure sensors.