• Title/Summary/Keyword: pitch angle

Search Result 701, Processing Time 0.024 seconds

Experimental Study on the Small-Scale Rotor Hover Performance in Partial Ground Conditions (부분적 지면조건 하에서의 소형 로터 블레이드 제자리 비행 성능에 대한 실험적 연구)

  • Seo, Jin-Woo;Lee, Byoung-Eon;Kang, Beom-Soo;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.12-21
    • /
    • 2010
  • This paper focuses on the hover performance experiment of a small-scale single rotor in partial ground conditions. In this study, small-scale rotor blade rotating device and floor panel are used to include partial ground effect. Thrust and torque were measured with varying collective pitch angles at fixed rotor rotating speed. The overlap distance between rotor and ground is d, the rotor diameter is D. It was shown that the ground effects have little effect on the rotor performance until d/D is 0.25. Four blade rotor has more increased thrust and more reduced power than those of two blade rotor because of stronger ground effect. In addition, it was also found that the thrust increases as a collective pitch angle become smaller. Based on these experiment results, we deduced new empirical equation considered blade number and partial ground effect.

Control Law Design for a Tilt-rotor Unmanned Aerial Vehicle with a Nacelle Mounted WE (Wing Extension) (체공성능 향상을 위한 확장날개 틸트로터 무인기의 제어법칙설계)

  • Kang, Young-Shin;Park, Bum-Jin;Cho, Am;Yoo, Chang-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1103-1111
    • /
    • 2014
  • The results of control law design for a tilt-rotor unmanned aerial vehicle that has a nacelle mounted wing extension (WE) are presented in this paper. It consists of a control surface mixer, stability and control augmentation system (SCAS), hold mode for altitude / speed / heading, and a guidance mode for preprogram and point navigation which includes automatic take-off and landing. The conversion corridor and the control moments derivatives between the original tilt-rotor and its variant of the nacelle mounted WE were compared to show the effectiveness of the WE. The nacelle conversion of the original tilt-rotor starts when the airspeed is greater than 30 km/h but its WE variant starts at 0 km/h in order to reduce the drag caused by the high incidence angle of the WE. The stability margins of the inner loop are presented with the optimization approach. The outer loops for the hold mode are designed with trial and error methods with linear and nonlinear simulation. The main control parameter for altitude control of the helicopter mode is thrust command and it is transferred to the pitch attitude command in airplane mode. Otherwise, the control parameter for the speed of the helicopter mode is the pitch attitude command and it is transferred to the thrust command in airplane mode. Therefore the speed and altitude hold mode are coupled to each other and are engaged at the same time when an internal pilot engages any of the altitude or speed hold modes. The nonlinear simulation results of the guidance control for the preprogrammed mode and point navigation are also presented including automatic take-off and landing in order to prove the full control law.

Combined First Metatarsal and Calcaneal Osteotomy for Fixed Cavovarus Deformity of The Foot (내반 요족 변형에서 시행한 제1중족골 및 종골에 대한 절골술)

  • Chu, In-Tak;Park, Jong-Min;Yoo, Jong-Min;Chung, Jin-Wha
    • Journal of Korean Foot and Ankle Society
    • /
    • v.14 no.2
    • /
    • pp.130-134
    • /
    • 2010
  • Purpose: The aim of this study was to evaluate the result of combined first metatarsal and calcaneal osteotomy for static cavovarus deformity of the foot. Materials and Methods: We performed a dorsal closing wedge $1^{st}$ metatarsal osteotomy and a lateral and upward displacement calcaneal osteotomy for 9 patients, 12 feet (6 male and 3 female). The mean age at the time of operation was 37 years and the mean followup period was 27 months. The causes of deformity were 2 poliomyelitis, 1 cerebral palsy, 1 Charcot-Marie-Tooth disease and 5 idiopathic type. Five lateral ligament reconstructions of the ankle and six percutaneous Achilles tendon lengthenings were added. The surgical results in terms of pain, function and alignment of the foot were evaluated by means of AOFAS ankle-hindfoot score and talo-$1^{st}$ metatarsal, calcaneus-$1^{st}$ metatarsal and calcaneal pitch angles were checked with weight bearing radiographs in lateral projection. Results: Talo-$1^{st}$ metatarsal and calcaneal pitch angles were reduced from the mean preoperative values of $21^{\circ}$ and $25^{\circ}$ to $12^{\circ}$ and $19^{\circ}$, respectively, at last followup. Also, calcaneus-$1^{st}$ metatarsal angle was increased from the mean $114^{\circ}$ to $114^{\circ}$. The mean AOFAS score was improved from 44.5 points preoperatively to 89.2 points at followup. There were 1 metatarso-cueiform joint nonunion, 1 sural nerve injury and 3 remaining symptomatic claw toes. Conclusion: Combined first metatarsal and calcaneal osteotomy appears to be an effective procedure for the treatment of adult static cavovarus foot.

Implementation of Mutual Conversion System between Body Movement and Visual·Auditory Information (신체 움직임-시·청각 정보 상호변환 시스템의 구현)

  • Bae, Myung-Jin;Kim, Sung-Ill
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.362-368
    • /
    • 2018
  • This paper has implemented a mutual conversion system that mutually converts between body motion signals and both visual and auditory signals. The present study is based on intentional synesthesia that can be perceived by learning. The Euler's angle was used in body movements as the output of a wearable armband(Myo). As a muscle sense, roll, pitch and yaw signals were used in this study. As visual and auditory signals, MIDI(Musical Instrument Digital Interface) signals and HSI(Hue, Saturation, Intensity) color model were used respectively. The method of mutual conversion between body motion signals and both visual and auditory signals made it easy to infer by applying one-to-one correspondence. Simulation results showed that input motion signals were compared with output simulation ones using ROS(Root Operation System) and Gazebo which is a 3D simulation tool, to enable the mutual conversion between body motion information and both visual and auditory information.

Acquisition of Grass Harvesting Characteristics Information and Improvement of the Accuracy of Topographical Surveys for the GIS by Sensor Fusion (I) - Analysis of Grass Harvesting Characteristics by Sensor Fusion -

  • Choi, Jong-Min;Kim, Woong;Kang, Tae-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.40 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • Purpose: This study aimed to install an RTK-GPS (Real Time Kinematic-Global Positioning System) and IMU (Inertial Measurement Unit) on a tractor used in a farm to measure positions, pasture topography, posture angles, and vibration accelerations, translate the information into maps using the GIS, analyze the characteristics of grass harvesting work, and establish new technologies and construction standards for pasture infrastructure improvement based on the analyzed data. Method: Tractor's roll, pitch, and yaw angles and vibration accelerations along the three axes during grass harvesting were measured and a GIS map prepared from the data. A VRS/RTK-GPS (MS750, Trimble, USA) tractor position measuring system and an IMU (JCS-7401A, JAE, JAPAN) tractor vibration acceleration measuring systems were mounted on top of a tractor and below the operator's seat to obtain acceleration in the direction of progression, transverse acceleration, and vertical acceleration at 10Hz. In addition, information on regions with bad workability was obtained from an operator performing grass harvesting and compared with information on changes in tractor posture angles and vibration acceleration. Results: Roll and pitch angles based on the y-axis, the direction of forward movements of tractor coordinate systems, changed by at least $9-13^{\circ}$ and $8-11^{\circ}$ respectively, leading to changes in working postures in the central and northern parts of the pasture that were designated as regions with bad workability during grass harvesting. These changes were larger than those in other regions. The synthesized vectors of the vibration accelerations along the y-axis, the x-axis (transverse direction), and the z-axis (vertical direction) were higher in the central and northwestern parts of the pasture at 3.0-4.5 m/s2 compared with other regions. Conclusions: The GIS map developed using information on posture angles and vibration accelerations by position in the pasture is considered sufficiently utilizable as data for selection of construction locations for pasture infrastructure improvement.

A Study on Phugoid Mode in Longitudinal Axis of T-50 (T-50 세로축 장주기 모드 운동 특성에 관한 연구)

  • Kim, Jong-Seop;Hwang, Byeong-Mun;Kim, Seong-Jun;Heo, Gi-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.25-32
    • /
    • 2006
  • An advanced method of Relaxed Static Stability (RSS) is utilized for improving the aerodynamic performance of modern version supersonic jet fighter aircraft. The flight control system utilize RSS criteria in both longitudinal and lateral-directional axes to achieve performance enhancements and improve stability. The T-50 advanced trainer employs the RSS concept in order to improve the aerodynamic performance and the flight control law in order to guarantee aircraft stability. The longitudinal two modes are the short period with high frequency and the phugoid mode with low frequency. The design goals of longitudinal control laws is concerned with the short period damping and frequency optimization using lower order equivalent system and utilizing the requirement of MIL-F-8785C. Analysis of short period mode has been and continues to be performed This paper addresses the analysis of aircraft phugoid node characteristics such as damping, natural frequency, and analysis of aircraft pitch motion that impacted by angle of attack limiter and auto pitch attitude control law.

Development of an Intelligent Active Trailing-edge Flap Rotor to Reduce Vibratory Loads in Helicopter (헬리콥터의 진동하중 저감을 위한 지능형 능동 뒷전 플랩 로터 제어 시스템 개발)

  • Lee, Jae-Hwan;Choe, Jae-Hyeok;Shin, Sang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.492-497
    • /
    • 2011
  • Helicopter uses a rotor system to generate lift, thrust and forces, and its aerodynamic environment is generally complex. Unsteady aerodynamic environment arises such as blade vortex interaction. This unsteady aerodynamic environment induces vibratory aerodynamic loads and high aeroacoustic noise. Those are at N times the rotor blade revolutions (N/rev). But conventional rotor control system composed of pitch links and swash plate is not capable of adjusting such vibratory loads because its control is restricted to 1/rev. Many active control methodologies have been examined to alleviate the problem. The blade using active control device manipulates the blade pitch angle at arbitrary frequencies. In this paper, Active Trailing-edge Flap blade, which is one of the active control methods, is designed to modify the unsteady aerodynamic loads. Active Trailing-edge Flap blade uses a trailing edge flap manipulated by an actuator to change camber of the airfoil. Piezoelectric actuators are installed inside the blade to manipulate the trailing edge flap.

  • PDF

Design of Asymmetric Pre-swirl Stator for LNG Carrier according to Variation of Stator Shapes (날개의 형상 변화에 따른 LNG선용 비대칭 전류고정날개 설계)

  • Lee, Choel-Min;Shin, Yong-Jin;Kim, Moon-Chan;Choi, Jung-Eun;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • Recently researchers are conducting a lot of research related to EEDI in order to satisfy IMO resolution MEPC. Especially they are interested in design of energy saving device. This paper is to design the asymmetric pre-swirl stator for 160K LNG carrier in order to reduce energy. Two types of the asymmetric pre-swirl stator are taken into account; constant and variable pitch angle stators. “constant” and “variable” mean state that the pitch of stators change by radius. The dimensions of the stators are initially determined using potential-flow code. The propulsion performances of the stators are predicted using viscous-flow code. The model test is carried out in towing tank in PNU. Prediction of ship performance generally follow ITTC recommended. Ship wake prediction was done by two method, ITTC 1978 and ITTC 1999. Therefore propulsion performances were compared ITTC 1978 with ITTC 1999 methods. Comparison components are delivered power and thrust deduction coefficient of the model. Final pre-swirl stator is selected by comparing experiment and CFD.

On The Towing Speed and Warp Tension of the Stern Trawler in the Atlantic Coast of Africa (대서양 아프리카 연안 트로올의 예망속도와 끌줄의 장력에 관하여)

  • 김진건
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.13 no.2
    • /
    • pp.21-26
    • /
    • 1977
  • The author operated with a six seam trawl net by the stern trawler, No. 85 Parto, 499 GT, 2,200ps, in the Atlantic coast of Africa, from June, 1975 to October, 1977. In the term, towing speed and warp tension were determined, and trawling condition was observed. 1. The condition of trawling was good when the tension was less than 7.5ton. 2. 290 RPM, $13.5^{\circ}\;to\;13.8^{\circ}$ of pitch angle, and 3.5 to 4 knots of towing speed was considered as optimum for the trawler in the relation to the engine condition.

  • PDF

Modeling and Analysis of Variable Wind Speed Turbine System Using Back to Back Converter (Back to bock 컨버터를 갖는 가변속 풍력터빈 시스템의 모델링과 해석)

  • Kim, Eel-Hwan;Kang, Keong-Bo;Kim, Jae-Hong;Moon, Sang-Ho;Oh, Sung-Bo;Kim, Se-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.150-157
    • /
    • 2005
  • This paper presents the simulation modeling and analysis of variable wind speed turbine system(VWTS) using the doubly fed induction generator(DFIG) connected the back to back converter system in the rotor side. In the simulation, using the model system which has the 660[kW] rated power, blade control and the dual converter system are modeled for verifying the control characteristics. The VWTS is controlled by the optimal pitch angle for maximum output power under the rated wind speed, and for the rated output power over the rated wind speed. And also power factor is controlled by the reactive power. To verify the effectiveness of the proposed method, simulation results are compared with the actual data from the V47 VWTS located in Hangwon wind farm in Jeju-Do. According to the comparison of these results, this method shows excellent performance.